Chin.J.Chem.Eng. ›› 2018, Vol. 26 ›› Issue (5): 1041-1050.doi: 10.1016/j.cjche.2018.01.006
• Catalysis, kinetics and reaction engineering • Previous Articles Next Articles
Qi Chen, Jintao Sun, Xiaojun Zhang
Received:
2017-10-06
Revised:
2017-12-01
Online:
2018-05-28
Published:
2018-06-29
Contact:
Qi Chen,E-mail address:qchen@bjtu.edu.cn
E-mail:qchen@bjtu.edu.cn
Supported by:
Supported by the National Natural Science Foundation of China (51376021, 21676024).
Qi Chen, Jintao Sun, Xiaojun Zhang. Kinetic contribution of CO2/O2 additive in methane conversion activated by non-equilibrium plasmas[J]. Chin.J.Chem.Eng., 2018, 26(5): 1041-1050.
[1] Y.G. Ju, W.T. Sun, Plasma assisted combustion:Dynamics and chemistry, Prog. Energy Combust. 48(2015) 21-83.[2] Y. Jamal, M.L. Wyszynski, On-board generation of hydrogen-rich gaseous fuels-A review, Int. J. Hydrog. Energy 19(1994) 557-572.[3] S.M. Starikovskaia, Plasma assisted ignition and combustion, J. Phys. D. Appl. Phys. 39(2006) R265-R299.[4] G. Petitpasa, J.-D. Rollier, A. Darmon, J. Gonzalez-Aguilar, R. Metkemeijer, L. Fulcheri, A comparative study of non-thermal plasma assisted reforming technologies-A review, Int. J. Hydrog. Energy 32(2007) 2848-2867.[5] X.M. Zhang, M.S. Cha, Electron-induced dry reforming of methane in a temperaturecontrolled dielectric barrier discharge react, J. Phys. D. Appl. Phys. 46(2013) 415205(10 pp.).[6] B. Wang, G. Xu, H. Sun, Kinetics of conversion of methane with electric field enhanced plasma, Chin. J. Chem. Eng. 12(1) (2004) 131-133.[7] Kazunari Katayama, Satoshi Fukada, Masabumi Nishikawa, Direct decomposition of methane using helium RF plasma, Fusion Eng. Des. 85(2010) 1381-1385.[8] Pedro Patino, Yasnahir Perez, Manuel Caetano, Coupling and reforming of methane by means of low pressure radio-frequency plasmas, Fuel 84(2005) 2008-2014.[9] B. Wang, Q. Sun, L.U. Yijun, M. Yang, W. Yan, Steam reforming of dimethyl ether by gliding arc gas discharge plasma for hydrogen production, Chin. J. Chem. Eng. 22(1) (2014) 104-112.[10] C.S. Kalra, A.F. Gutsol, A.A. Fridman, Gliding arc discharges as a source of intermediate plasma for methane partial oxidation, IEEE Trans. Plasma Sci. 33(1) (2005) 32-41.[11] A. Czernikowski, Glidarc assisted preparation of the synthesis gas from natural gas and waste hydrocarbons gases, Oil Gas Sci. Technol. Rev. IFP 2(56) (2001) 181-198.[12] H. Sekiguchi, Y. Mori, Steam plasma reforming using microwave discharge, Thin Solid Films 435(2003) 44-50.[13] Changsheng Shen, Dekun Sun, Hongsheng Yang, Methane coupling in microwave plasma under atmospheric pressure, J. Nat. Gas Chem. 20(2011) 449-456.[14] V.D. Rusanov, A.I. Babaritskii, E.N. Geramisov, M.A. Deminskii, S.A. Demkin, V.K. Zhivotov, et al., Stimulation of the partial oxidation of methane in a microwave discharge, Dokl. Phys. 48(3) (2003) 119-122.[15] I. Babararistkii, I.R. Baranov, M.B. Bibikov, S.A. Demkin, V.K. Zhivotov, G.M. Konovalov, et al., Partial hydrocarbon oxidation processes induced by atmospheric-pressure microwave-discharge plasma, High Energy Chem. 38(6) (2004) 407-410.[16] W.T. Sun, Mruthunjaya Uddi, Sang Hee Won, Timothy Ombrello, Campbell Carter, Y.G. Ju, Kinetic effects of non-equilibrium plasma-assisted methane oxidation on diffusion flame extinction limits, Combust. Flame 159(2012) 221-229.[17] J.K. Lefkowitz, M. Uddi, B.C. Windom, G.F. Lou, Y.G. Ju, In situ species diagnostics and kinetic study of plasma activated ethylene dissociation and oxidation in a low temperature flow reactor, Proc. Combust. Inst. 35(3) (2015) 3505-3512.[18] J.K. Lefkowitz, P. Guo, A. Rousso, Y.G. Ju, Species and temperature measurements of methane oxidation in a nanosecond repetitively pulsed discharge, Philos. Trans. R. Soc. A 373(2015), 20140333.[19] B. Zhu, X.S. Li, J.L. Liu, X.B. Zhu, A.M. Zhu, Kinetics study on carbon dioxide reforming of methane in kilohertz spark-discharge plasma, Chem. Eng. J. 264(2015) 445-452.[20] B. Wang, E. Yang, G. Xu, J. Hao, Theoretical study of reaction paths and transition states on conversion methane into C2 hydrocarbons through plasma, Chin. J. Chem. Eng. 15(1) (2007) 44-50.[21] V.I. Zyn, Kinetic identification of a mechanism of complex plasma chemical reactions, Plasma Chem. Plasma Process. 18(3) (1998) 395-408.[22] J.R. Fincke, R.P. Anderson, T. Hyde, B.A. Detering, R. Wright, R.L. Bewley, D.C. Haggard, W.D. Swank, Plasma thermal conversion of methane to acetylene, Plasma Chem. Plasma Process. 22(1) (2002) 105-136.[23] Xiaoguang Guo, Guangzong Fang, Gang Li, Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen, Science 344(2014) 616-619.[24] AI-Fatesh Ahmed, Naeem Muhammad, Anis, Role of La2O3 as promoter and support in Ni/γ-Al2O3 catalysts for dry reforming of methane, Chin. J. Chem. Eng. 22(1) (2014) 28-37.[25] A.M. Starik, P.S. Kuleshov, B.I. Loukhovitski, N.S. Titova, Theoretical study of partial oxidation of methane by non-equilibrium oxygen plasma to produce hydrogen rich syngas, Chin. J. Chem. Eng. 40(32) (2015) 9872-9884.[26] Alexander Fridman, Plasma Chemistry, Cambridge University Press, 2008.[27] LAPLACE database, www.lxcat.net (retrieved on September 29, 2016).[28] H.C. Straub, D. Lin, B.G. Lindsay, K.A. Smith, R.F. Stebbings, Absolute partial cross sections for electron-impact ionization of CH4 from threshold to 1000 eV, J. Chem. Phys. 106(11) (1997) 4430-4435.[29] R.K. Janev, D. Reiter, Collision processes of CHy and CHy hydrocarbons with plasma electrons and protons, Phys. Plasmas 9(9) (2002) 4071-4081.[30] X. Shen, X. Yang, J. Santner, J. Sun, Y. Ju, Experimental and kinetic studies of acetylene flames at elevated pressures, Proc. Combust. Inst. 35(2015) 721-728.[31] H. Zhao, J. Fu, F.M. Haas, Y. Ju, Effect of prompt dissociation of formyl radical on 1,3,5-trioxane and CH2O laminar flame speeds with CO2 dilution at elevated pressure, Combust. Flame 183(2017) 253-260.[32] H. Zhao, X. Yang, Y. Ju, Kinetic studies of ozone assisted low temperature oxidation of dimethyl ether in a flow reactor using molecular-beam mass spectrometry, Combust. Flame 173(2016) 187-194.[33] Tomas Kozak, Annemie Bogaerts, Splitting of CO2 by vibrational excitation in nonequilibrium plasmas:A reaction kinetics model, Plasma Sources Sci. Technol. 23(2014) 1-17.[34] Tomas Kozak, Annemie Bogaerts, Evaluation of the energy efficiency of CO2 conversion in microwave discharges using a reaction kinetics model, Plasma Sources Sci. Technol. 24(2015), 015024. (17 pp.).[35] Tomohiro Nozaki, Nahoko Muto, Shigeru Kado, Ken Okazaki, Dissociation of vibrationally excited methane on Ni catalyst:Part 1. Application to methane steam reforming, Catal. Today 89(1-2) (2004) 57-65.[36] Q. Chen, X.F. Yang, J.T. Sun, X.J. Zhang, X.G. Mao, Y.G. Ju, B.E. Koel, Pyrolysis and oxidation of methane in a RF plasma reactor, Plasma Chem. Plasma Process. 37(2017) 1551-1571. |
[1] | Peng Wang, Lang Chen, Sheng Shen, Chak-Tong Au, Shuangfeng Yin. Methane oxybromination over Rh-based catalysts: Effect of supports [J]. Chinese Journal of Chemical Engineering, 2020, 28(7): 1809-1815. |
[2] | Hui Zou, Teng Pan, Yanwen Shi, Youwei Cheng, Lijun Wang, Yu Zhang, Xi Li. Light olefin production by catalytic co-cracking of Fischer-Tropsch distillate with methanol and the reaction kinetics investigation [J]. Chinese Journal of Chemical Engineering, 2020, 28(1): 143-151. |
[3] | Yu Ji, Tengda Zhang, Xia Gui, Haijian Shi, Zhi Yun. Solventless ketalization of glycerol to solketal with acetone over the ionic liquid[P(C4H9)3C14H29][TsO] [J]. Chinese Journal of Chemical Engineering, 2020, 28(1): 158-164. |
[4] | Lixia Kang, Yongzhong Liu. Synthesis of flexible heat exchanger networks: A review [J]. Chinese Journal of Chemical Engineering, 2019, 27(7): 1485-1497. |
[5] | Lijing Zang, Kejin Huang, Ting Guo, Yang Yuan, Haisheng Chen, Liang Zhang, Xing Qian, Shaofeng Wang. Temperature inferential control of a reactive distillation column with double reactive sections [J]. Chinese Journal of Chemical Engineering, 2019, 27(4): 896-904. |
[6] | Abbas Hemmati, Hamed Rashidi. Mass transfer investigation and operational sensitivity analysis of aminebased industrial CO2 capture plant [J]. Chin.J.Chem.Eng., 2019, 27(3): 534-543. |
[7] | Tao Shen, Bo Ouyang, Chao Qian, Xinzhi Chen. Aminolysis of ethyl acetate in continuous flow and its reaction kinetics [J]. Chinese Journal of Chemical Engineering, 2019, 27(12): 2948-2952. |
[8] | Ming Liu, Zhongjie Shen, Qinfeng Liang, Jianliang Xu, Haifeng Liu. Characteristics of single petcoke particle during the gasification process at high temperatures [J]. Chinese Journal of Chemical Engineering, 2019, 27(10): 2427-2437. |
[9] | Le Wu, Xiaoqiang Liang, Lixia Kang, Yongzhong Liu. Integration strategies of hydrogen network in a refinery based on operational optimization of hydrotreating units [J]. , 2017, 25(8): 1061-1068. |
[10] | Shiguang Zhang, Lei Li, Youzhi Liu, Qiaoling Zhang. TiO2-SA-Arg nanoparticles stabilized Pickering emulsion for photocatalytic degradation of nitrobenzene in a rotating annular reactor [J]. , 2017, 25(2): 223-231. |
[11] | Lili Fu, Yinge Bai, Gaozhi Lü, Denggao Jiang. Reaction kinetics of isopropyl palmitate synthesis [J]. Chin.J.Chem.Eng., 2015, 23(8): 1335-1339. |
[12] | Lianfang Cai, Xuemin Tian . A new process monitoring method based on noisy time structure independent component analysis [J]. Chin.J.Chem.Eng., 2015, 23(1): 162-172. |
[13] | Sun Shuaishuai, Huang Guoqiang. Simulation of Reactive Distillation Process for Monosilane Production via Redistribution of Trichlorosilane [J]. Chin.J.Chem.Eng., 2014, 22(3): 287-293. |
[14] | WANG Na, GENG Yanlou, AN Hualiang, ZHAO Xinqiang, WANG Yanji. Synthesis of Toluene-2,4-Bisurea from 2,4-Toluene Diamine and Urea and the Reaction Kinetics [J]. Chin.J.Chem.Eng., 2013, 21(8): 927-932. |
[15] | YANG Chuanxin, YAN Xuefeng. A Fuzzy-based Adaptive Genetic Algorithm and Its Case Study in Chemical Engineering [J]. , 2011, 19(2): 299-307. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|