Chinese Journal of Chemical Engineering ›› 2019, Vol. 27 ›› Issue (3): 677-684.doi: 10.1016/j.cjche.2018.03.036
• Energy, Resources and Environmental Technology • Previous Articles Next Articles
Ashutosh Kumar1, Ram Prasad2, Yogesh Chandra Sharma1
Received:
2017-11-22
Revised:
2018-01-19
Online:
2019-03-28
Published:
2019-04-25
Contact:
Yogesh Chandra Sharma,E-mail address:ysharma.apc@iitbhu.ac.in
E-mail:ysharma.apc@iitbhu.ac.in
Ashutosh Kumar, Ram Prasad, Yogesh Chandra Sharma. Ethanol steam reforming study over ZSM-5 supported cobalt versus nickel catalyst for renewable hydrogen generation[J]. Chinese Journal of Chemical Engineering, 2019, 27(3): 677-684.
[1] | J. Lin, L. Chen, C.K.S. Choong, Z. Zhong, L. Huang, Molecular catalysis for the steam reforming of ethanol, Sci. China Chem. 58(1) (2015) 60-78. |
[2] | C. Montero, L. Oar-Arteta, A. Remiro, A. Arandia, J. Bilbao, A.G. Gayubo, Thermodynamic comparison between bio-oil and ethanol steam reforming, Int. J. Hydrogen Energy 40(46) (2015) 15963-15971. |
[3] | J.F. Haw, Zeolite acid strength and reaction mechanisms in catalysis, Phys. Chem. Chem. Phys. 4(22) (2002) 5431-5441. |
[4] | C. Zhang, S. Li, G. Wu, et al., Steam reforming of ethanol over skeletal Ni-based catalysts:A temperature programmed desorption and kinetic study, AICHE J. 60(2) (2014) 635-644. |
[5] | A.F. Lucredio, J.D.A. Bellido, A. Zawadzki, E.M. Assaf, Co catalysts supported on SiO2 and γ-Al2O3 applied to ethanol steam reforming:Effect of the solvent used in the catalyst preparation method, Fuel 90(4) (2011) 1424-1430. |
[6] | C. Wu, P.T. Williams, A novel nano-Ni/SiO2 catalyst for hydrogen production from steam reforming of ethanol, Environ. Sci. Technol. 44(15) (2010) 5993-5998. |
[7] | L. Zhang, W. Li, J. Liu, C. Guo, Y. Wang, J. Zhang, Ethanol steam reforming reactions over Al2O3·SiO2-supported Ni-La catalysts, Fuel 88(3) (2009) 511-518. |
[8] | E. Moretti, L. Storaro, A. Talon, S. Chitsazan, G. Garbarino, G. Busca, et al., Ceria-zirconia based catalysts for ethanol steam reforming, Fuel 153(2015) 166-175. |
[9] | M.S. Scott, G.I.N. Waterhouse, K. Kato, S.L.Y. Chang, H. Idriss, T. Sohnel, Structural analysis of Rh-Pd/CeO2 catalysts under reductive conditions:An X-ray investigation, Top. Catal. 58(2-3) (2015) 123-133. |
[10] | E. Varga, Z. Ferencz, A. Oszko, A. Erdohelyi, J. Kiss, Oxidation states of active catalytic centers in ethanol steam reforming reaction on ceria based Rh promoted Co catalysts:An XPS study, J. Mol. Catal. A Chem. 397(2015) 127-133. |
[11] | G. Vari, L. Ovari, C. Papp, H.P. Steinruck, J. Kiss, Z. Konya, The interaction of cobalt with CeO2(111) prepared on Cu(111), J. Phys. Chem. C 119(17) (2015) 9324-9333. |
[12] | S.R. Wang, W.W. Guo, L. Guo, X.B. Li, Q. Wang, Experimental and subsequent mechanism research on the steam reforming of ethanol over a Ni/CeO2 catalyst, Int. J. Green Energy 12(7) (2015) 694-701. |
[13] | A.M. Karim, Y. Su, M.H. Engelhard, D.L. King, Y. Wang, Catalytic roles of Co0 and Co2+ during steam reforming of ethanol on Co/MgO catalysts, ACS Catal. 1(4) (2011) 279-286. |
[14] | A. Machocki, A. Denis, W. Grzegorczyk, W. Gac, Nano-and micro-powder of zirconia and ceria-supported cobalt catalysts for the steam reforming of bio-ethanol, Appl. Surf. Sci. 256(17) (2010) 5551-5558. |
[15] | B.S. Kwak, K.M. Kim, S.W. Jo, et al., Characterizations of bimetallic NiV-supported SiO2 catalysts prepared for effectively hydrogen evolutions from ethanol steam reforming, J. Ind. Eng. Chem. 37(2016) 57-66. |
[16] | P.K. Sharma, N. Saxena, V.K. Bind, P.K. Roy, A. Bhatt, Steam reforming of ethanol over mesoporous Rh/CeZrO2:Mechanistic evaluation using in situ DRIFT spectroscopy, Can. J. Chem. Eng. 94(4) (2016) 752-760. |
[17] | L. Huang, C. Choong, L. Chen, et al., Monometallic carbonyl-derived CeO2-supported Rh and Co bicomponent catalysts for CO-free, high-yield H2 generation from lowtemperature ethanol steam reforming, ChemCatChem 7(10) (2015) 1509. |
[18] | K. Sato, K. Kawano, A. Ito, Y. Takita, K. Nagaoka, Hydrogen production from bioethanol:Oxidative steam reforming of aqueous ethanol triggered by oxidation of Ni/Ce0.5Zr0.5O2-x at low temperature, ChemSusChem 3(12) (2010) 1364-1366. |
[19] | G. Busca, U. Costantino, T. Montanari, G. Ramis, C. Resini, M. Sisani, Nickel versus cobalt catalysts for hydrogen production by ethanol steam reforming:Ni-Co-Zn-Al catalysts from hydrotalcite-like precursors, Int. J. Hydrogen Energy 35(11) (2010) 5356-5366. |
[20] | M. Li, X. Wang, S. Li, S. Wang, X. Ma, Hydrogen production from ethanol steam reforming over nickel based catalyst derived from Ni/Mg/Al hydrotalcite-like compounds, Int. J. Hydrogen Energy 35(13) (2010) 6699-6708. |
[21] | A.F. Lucredio, J.D.A. Bellido, E.M. Assaf, Effects of adding La and Ce to hydrotalcitetype Ni/Mg/Al catalyst precursors on ethanol steam reforming reactions, Appl. Catal. A Gen. 388(1-2) (2010) 77-85. |
[22] | C. Resini, T. Montanari, L. Barattini, et al., Hydrogen production by ethanol steam reforming over Ni catalysts derived from hydrotalcite-like precursors:Catalyst characterization, catalytic activity and reaction path, Appl. Catal. A Gen. 355(1-2) (2009) 83-93. |
[23] | F. Aupretre, C. Descorme, D. Duprez, D. Casanave, D. Uzio, Ethanol steam reforming over MgxNi1-x Al2O3 spinel oxide-supported Rh catalysts, J. Catal. 233(2) (2005) 464-477. |
[24] | M.N. Barroso, M. Gomez, L. Arrua, M.C. Abello, Reactivity of aluminum spinels in the ethanol steam reforming reaction, Catal. Lett. 109(1-2) (2006) 13-19. |
[25] | S.M. de Lima, A.M. da Silva, L.O.O. da Costa, et al., Evaluation of the performance of Ni/La2O3 catalyst prepared from LaNiO3 perovskite-type oxides for the production of hydrogen through steam reforming and oxidative steam reforming of ethanol, Appl. Catal. A Gen. 377(1-2) (2010) 181-190. |
[26] | L. Lang, S. Zhao, X. Yin, W. Yang, C. Wu, Catalytic activities of K-modified zeolite ZSM-5 supported rhodium catalysts in low-temperature steam reforming of bioethanol, Int. J. Hydrogen Energy 40(32) (2015) 9924-9934. |
[27] | A. Vizcaino, A. Carrero, J. Calles, Hydrogen production by ethanol steam reforming over Cu-Ni supported catalysts, Int. J. Hydrogen Energy 32(10-11) (2007) 1450-1461. |
[28] | F.C. Campos-Skrobot, R.C.P. Rizzo-Domingues, N.R.C. Fernandes-Machado, M.P. Cantao, Novel zeolite-supported rhodium catalysts for ethanol steam reforming, J. Power Sources 183(2) (2008) 713-716. |
[29] | H. Inokawa, S. Nishimoto, Y. Kameshima, M. Miyake, Difference in the catalytic activity of transition metals and their cations loaded in zeolite Y for ethanol steam reforming, Int. J. Hydrogen Energy 35(21) (2010) 11719-11724. |
[30] | H. Inokawa, S. Nishimoto, Y. Kameshima, M. Miyake, Promotion of H2 production from ethanol steam reforming by zeolite basicity, Int. J. Hydrogen Energy 36(23) (2011) 15195-15202. |
[31] | B.S. Kwak, J.S. Lee, J.S. Lee, B.-H. Choi, M.J. Ji, M. Kang, Hydrogen-rich gas production from ethanol steam reforming over Ni/Ga/Mg/Zeolite Y catalysts at mild temperature, Appl. Energy 88(12) (2011) 4366-4375. |
[32] | N. Wu, J. Low, T. Liu, J. Yu, S. Cao, Hierarchical hollow cages of Mn-Co layered double hydroxide as supercapacitor electrode materials, Appl. Surf. Sci. 413(2017) 35-40. |
[33] | D. Kim, B.S. Kwak, B.-K. Min, M. Kang, Characterization of Ni and W co-loaded SBA-15 catalyst and its hydrogen production catalytic ability on ethanol steam reforming reaction, Appl. Surf. Sci. 332(2015) 736-746. |
[34] | C.M.A. Parlett, A. Aydin, L.J. Durndell, et al., Tailored mesoporous silica supports for Ni catalysed hydrogen production from ethanol steam reforming, Catal. Commun. 91(2017) 76-79. |
[35] | S. He, Z. Mei, N. Liu, et al., Ni/SBA-15 catalysts for hydrogen production by ethanol steam reforming:Effect of nickel precursor, Int. J. Hydrogen Energy 42(21) (2017) 14429-14438. |
[36] | S. He, S. He, L. Zhang, et al., Hydrogen production by ethanol steam reforming over Ni/SBA-15 mesoporous catalysts:Effect of Au addition, Catal. Today 258(2015) 162-168. |
[37] | A.J. Vizcaino, A. Carrero, J.A. Calles, Comparison of ethanol steam reforming using Co and Ni catalysts supported on SBA-15 modified by Ca and Mg, Fuel Process. Technol. 146(2016) 99-109. |
[38] | B. Bej, N.C. Pradhan, S. Neogi, Production of hydrogen by steam reforming of methane over alumina supported nano-NiO/SiO2 catalyst, Catal. Today 207(2013) 28-35. |
[39] | A. Chica, Zeolites:Promised materials for the sustainable production of hydrogen, ISRN Chem. Eng. 2013(2013) 1-19. |
[40] | Y.C. Sharma, A. Kumar, R. Prasad, S.N. Upadhyay, Ethanol steam reforming for hydrogen production:Latest and effective catalyst modification strategies to minimize carbonaceous deactivation, Renew. Sust. Energ. Rev. 74(2017) 89-103. |
[41] | A. Kumar, R. Prasad, Y.C. Sharma, Ethanol steam reforming with Co0(111) for hydrogen and carbon nanofilament generation, Resource-Efficient Technol. 3(4) (2017) 422-428. |
[42] | X. Wang, H.-Y. Chen, W.M.H. Sachtler, Catalytic reduction of NOx by hydrocarbons over Co/ZSM-5 catalysts prepared with different methods, Appl. Catal. B Environ. 26(4) (2000) L227-L39. |
[43] | A. Penkova, S. Dzwigaj, R. Kefirov, K. Hadjiivanov, M. Che, Effect of the preparation method on the state of nickel ions in BEA zeolites. A study by Fourier transform infrared spectroscopy of adsorbed CO and NO, temperature-programmed reduction, and X-ray diffraction, Phys. Chem. C 111(24) (2007) 8623-8631. |
[44] | C.I. Round, C.D. Williams, K. Latham, C.V.A. Duke, Ni-ZSM-5 and Cu-ZSM-5 synthesized directly from aqueous fluoride gels, Chem. Mater. 13(2) (2001) 468-472. |
[45] | S.-J. Jong, S. Cheng, Reduction behavior and catalytic properties of cobalt containing ZSM-5 zeolites, Appl. Catal. A Gen. 126(1) (1995) 51-66. |
[46] | J.R. Ferraro, Low-frequency Vibrations of Inorganic and Coordination Compounds, Springer, US, 2012. |
[47] | B. Zhang, X. Tang, Y. Li, Y. Xu, W. Shen, Hydrogen production from steam reforming of ethanol and glycerol over ceria-supported metal catalysts, Int. J. Hydrogen Energy 32(13) (2007) 2367-2373. |
[1] | Jiahao Cui, Shejiang Liu, Hua Xue, Xianqin Wang, Ziquan Hao, Rui Liu, Wei Shang, Dan Zhao, Hui Ding. Catalytic ozonation of volatile organic compounds (ethyl acetate) at normal temperature [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 159-167. |
[2] | Mohammad Reza Nabid, Yasamin Bide, Mahsa Jafari. One-step synthesis of Ni@Pd/NH2-Fe3O4 nanoparticles as affordable catalyst for formic acid dehydrogenation [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 168-174. |
[3] | Chaofeng Zhang, Tonglu Zhang, Jing Zhang, Jiandong Zhang, Ruifeng Li. Controllable synthesis of polyoxymethylene dimethyl ethers by ionic liquids encapsulated in mesoporous SBA-16 [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 175-182. |
[4] | Yanyong Li, Meng Ge, Jiameng Wang, Mengquan Guo, Fanji Liu, Mingxun Han, Yanhong Xu, Lihong Zhang. Dehydrogenation of isobutane to isobutene over a Pt-Cu bimetallic catalyst in the presence of LaAlO3 perovskite [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 203-211. |
[5] | Jiake Yang, Tongjiu Zuo, Jiangyin Lu. Effect of preparation methods on the hydrocracking performance of NiMo/Al2O3 catalysts [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 224-230. |
[6] | Ying Xu, Pengru Chen, Wei Lv, Chenguang Wang, Longlong Ma, Qi Zhang. Hydrogenolysis of organosolv hydrolyzed lignin over high-dispersion Ni/Al-SBA-15 catalysts for phenolic monomers [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 307-314. |
[7] | Yu Shi, Liang Zhang, Jun Li, Qian Fu, Xun Zhu, Qiang Liao, Yongsheng Zhang. Effect of operating parameters on the performance of thermally regenerative ammonia-based battery for low-temperature waste heat recovery [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 335-340. |
[8] | Zihao Yao, Jinyan Zhao, Chenxia Zhao, Shengwei Deng, Guilin Zhuang, Xing Zhong, Zhongzhe Wei, Yang Li, Shibin Wang, Jianguo Wang. A first-principles study of reaction mechanism over carbon decorated oxygen-deficient TiO2 supported Pd catalyst in direct synthesis of H2O2 [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 126-134. |
[9] | Zhen Chen, Zhongliang Ma, Jie Zheng, Xingguo Li, Etsuo Akiba, Hai-Wen Li. Perspectives and challenges of hydrogen storage in solid-state hydrides [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 1-12. |
[10] | Xiaopan Chen, Meihua Zhu, Sitong Xiang, Tian Gui, Ting Wu, Yuqin Li, Na Hu, Izumi Kumakiri, Xiangshu Chen, Hidetoshi Kita. Growth process and short chain alcohol separation performance of fluoride-containing NaY zeolite membrane [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 154-159. |
[11] | Yuan Su, Keming Ji, Jiayao Xun, Kan Zhang, Ping Liu, Liang Zhao. Catalytic oxidation of low concentration formaldehyde over Pt/TiO2 catalyst [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 190-195. |
[12] | Fangjie Lu, Dong Xu, Yusheng Lu, Bin Dai, Mingyuan Zhu. High nitrogen carbon material with rich defects as a highly efficient metal-free catalyst for excellent catalytic performance of acetylene hydrochlorination [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 196-203. |
[13] | Guoju Yang, Ji Han, Yue Liu, Ziyi Qiu, Xiaoxin Chen. The synthetic strategies of hierarchical TS-1 zeolites for the oxidative desulfurization reactions [J]. Chinese Journal of Chemical Engineering, 2020, 28(9): 2227-2234. |
[14] | Yanan Guan, Hengyu Shen, Xing Guo, Boyang Mao, Zhenyuan Yang, Yangtao Zhou, He Liang, Xiaolei Fan, Yilai Jiao, Jinsong Zhang. Structured hierarchical Mn-Co mixed oxides supported on silicalite-1 foam catalyst for catalytic combustion [J]. Chinese Journal of Chemical Engineering, 2020, 28(9): 2319-2327. |
[15] | Ammaru Ismaila, Huanhao Chen, Yan Shao, Shaojun Xu, Yilai Jiao, Xueli Chen, Xin Gao, Xiaolei Fan. Renewable hydrogen production from steam reforming of glycerol (SRG) over ceria-modified γ-alumina supported Ni catalyst [J]. Chinese Journal of Chemical Engineering, 2020, 28(9): 2328-2336. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||