Chinese Journal of Chemical Engineering ›› 2019, Vol. 27 ›› Issue (7): 1608-1617.doi: 10.1016/j.cjche.2018.11.003
• Separation Science and Engineering • Previous Articles Next Articles
Yunsong Yu1, Chen Zhang1, Zaoxiao Zhang1,2, Geoff Wang3
Received:
2018-08-14
Online:
2019-07-28
Published:
2019-10-14
Contact:
Zaoxiao Zhang
E-mail:zhangzx@mail.xjtu.edu.cn
Yunsong Yu, Chen Zhang, Zaoxiao Zhang, Geoff Wang. Characterizing the catalyst fluidization with field synergy to improve the amine absorption for CO2 capture[J]. Chinese Journal of Chemical Engineering, 2019, 27(7): 1608-1617.
[1] E. Karlsson, M. Gourdon, L. Vamling, Solid dissolution into a vertical falling film under industrial-like conditions, Ind. Eng. Chem. Res. 53(22) (2014) 9478-9787. [2] P.J. Cheng, K.C. Liu, C.C. Wang, Nonlinear evolution of the travelling waves in roll coating flows of thin viscoelastic polymer falling films, Appl. Mech. Mater. 479-480(2016) 45-49. [3] S.I. Cheong, K.Y. Choi, A study on the polymer layer-forming phenomena in a rotating disk polycondensation reactor, J. Appl. Polym. Sci. 55(13) (2010) 1819-1826. [4] Z. Xi, L. Zhao, Z. Liu, New falling film reactor for melt polycondensation process, Macromol. Symp. 259(1) (2007) 10-16. [5] Z. Liu, J. Shi, Grid falling film devolatilizer, 2011, U.S. Pat., 7959133. [6] G.H. Hu, I. Kadri, C. Picot, One-line measurement of the residence time distribution in screw extruders, Polym. Eng. Sci. 39(5) (1999) 930-939. [7] K. Yang, C. Xin, D. Yu, B. Yan, J. Pang, Y. He, Numerical simulation and experimental study of pressure and residence time distribution of triple-screw extruder, Polym. Eng. Sci. 55(1) (2015) 156-162. [8] S. Mohammadi, K.V.K. Boodhoo, Online conductivity measurement of residence time distribution of thin film flow in the spinning disc reactor, Chem. Eng. J. 207-208(2012) 885-894. [9] F. Visscher, J.D. Hullu, M.H.J.M.D. Croon, J.V.D. Schaaf, J.C. Schouten, Residence time distribution in a single-phase rotor-stator spinning disk reactor, AIChE J. 59(7) (2013) 2686-2693. [10] X. Feng, D.A. Patterson, M. Balaban, E.A.C. Emanuelsson, Characterization of liquid flow in the spinning cloth disc reactor:Residence time distribution, visual study and modeling, Chem. Eng. J. 235(2014) 356-367. [11] J.T. Adeosun, A. Lawal, Numerical and experimental studies of mixing characteristics in a T-junction microchannel using residence-time distribution, Chem. Eng. Sci. 64(10) (2009) 2422-2432. [12] L. Zhang, Q. Pan, G.L. Rempel, Residence time distribution in a multistage agitated contactor with Newtonian fluids:CFD prediction and experimental validation, Ind. Eng. Chem. Res. 46(11) (2007) 3538-3546. [13] Y. Gao, B.J. Glasser, M.G. Ierapetritou, A. Cuitino, F.J. Muzzio, J.W. Beeckman, N. A. Fassbender, W.G. Borghard, Measurement of residence time distribution in a rotary calciner, AIChE J. 59(59) (2013) 4068-4076. [14] X. Zhang, Z. Xu, L. Feng, X. Song, G. Hu, Assessing local residence time distributions in screw extruders through a new in-line measurement instrument, Polym. Eng. Sci. 46(4) (2006) 510-519. [15] X. Zhang, L. Feng, S. Hoppe, G. Hu, Residence revolution, and residence volume distributions in twin-screw extruders, Polym. Eng. Sci. 48(1) (2008) 19-28. [16] H. Fang, F. Mighri, A. Ajji, P. Cassagnau, S. Elkoun, Flow behavior in a corotating twin-screw extruder of pure polymers and blends:Characterization by fluorescence monitoring technique, J. Appl. Polym. Sci. 120(4) (2011) 2304-2312. [17] S. Laske, A. Witschnigg, R.K. Selvasankar, C. Holzer, Measuring the residence time distribution in a twin screw extruder with the use of NIR-spectroscopy, J. Appl. Polym. Sci. 131(6) (2014) 596-602. [18] S. Kalliadasis, C. Ruyer-Quil, B. Scheid, M.G. Velarde, Falling liquid films, Springer, London, 2011. [19] G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han, S. Nas, Y.J. Jan, A front-tracking method for the computations of multiphase flow, J. Comput. Phys. 169(2) (2001) 708-759. [20] K. Moran, J. Inumaru, M. Kawaji, Instantaneous hydrodynamics of a laminar wavy liquid film, Int. J. Multiphase Flow 28(5) (2002) 731-755. [21] D. Gao, N.B. Morley, V. Dhir, Numerical simulation of wavy falling film flow using VOF method, J. Comput. Phys. 192(2) (2003) 624-642. [22] F. Losasso, R. Fedkiw, S. Osher, Spatially adaptive techniques for level set methods and incompressible flow, Comput. Fluids 35(10) (2006) 995-1010. [23] W. Bo, X. Liu, J. Glimm, X. Li, A robust front tracking method:Verification and application to simulation of the primary breakup of a liquid jet, SIAM J. Sci. Comput. 33(4) (2011) 1505-1524. [24] G. Tryggvason, M. Ma, J. Lu, DNS-assisted modeling of bubbly flows in vertical channels, Nucl. Sci. Eng. 184(2016) 312-320. [25] M. Ma, J. Lu, G. Tryggvason, Using statistical learning to close two-fluid multiphase flow equations for a simple bubbly system, Phys. Fluids 27(2015) 092101. [26] M. Ma, J. Lu, G. Tryggvason, Using statistical learning to close two-fluid multiphase flow equations for bubbly flows in vertical channels, Int. J. Multiphase Flow 85(2016) 336-347. [27] T. Nosoko, P.N. Yoshimura, T. Nagata, K. Oyakawa, Characteristics of twodimensional waves on a falling liquid film, Chem. Eng. Sci. 51(5) (1996) 725-732. [28] E.W. Llewellin, E.D. Bello, J. Taddeucci, P. Scarlato, S.J. Lane, The thickness of the falling film of liquid around a Taylor bubble, Proc. R. Soc. A Math. Phys. Eng. Sci. 468(2140) (2011) 1041-1064. [29] F.K. Wasden, A.E. Dukler, Insights into the hydrodynamics of free falling wavy films, AIChE J. 35(2) (1989) 187-195. [30] W. Ambrosini, N. Forgione, F. Oriolo, Statistical characteristics of a water film falling down a flat plate at different inclinations and temperatures, Int. J. Multiphase Flow 28(9) (2002) 1521-1540. [31] X. Chen, S. Shen, Y. Wang, J. Chen, J. Zhang, Measurement on falling film thickness distribution around horizontal tube with laser-induced fluorescence technology, Int. J. Heat Mass Transf. 89(2015) 707-713. [32] P.V. Danckwerts, Continuous flow systems:Distribution of residence times, Chem. Eng. Sci. 2(1953) 1-13. [33] J.H. Ham, B. Platzer, Semi-empirical equations for the residence time distributions in disperse systems-Part 1:Continuous phase, Chem. Eng. Technol. 27(2004) 1172-1178. [34] S. Chen, J. Ma, X. Zhang, W. Chen, Numerical simulation of the behavior of high-viscosity fluids falling film flow down the vertical wavy wall, Asia Pac. J. Chem. Eng. 12(1) (2017) 97-109. [35] J.U. Brackbill, D.B. Kothe, C. Zemach, A continuum method for modeling surface tension, J. Comput. Phys. 100(2) (1992) 335-354. [36] L. Zhao, R.L. Cerro, Experimental characterization of viscous films flows over complex surfaces, Int. J. Multiphase Flow 18(4) (1992) 495-516. [37] L. Chen, G. Hu, Applications of a statistical theory in residence time distributions, AICHE J. 39(9) (1993) 1558-1562. [38] A.A. Mouza, M.N. Pantzali, S.V. Paras, Falling film and flooding phenomena in small diameter vertical tubes:The influence of liquid properties, Chem. Eng. Sci. 60(18) (2005) 4981-4991. [39] C.E. Meza, V. Balakotaiah, Modeling and experimental studies of large amplitude waves on vertically falling films, Chem. Eng. Sci. 63(19) (2008) 4704-4734. [40] S. Bo, X. Ma, Z. Lan, H. Chen, J. Chen, Numerical simulation on wave behavior and flow dynamics of laminar-wavy falling films:Effect of surface tension and viscosity, Can. J. Chem. Eng. 90(1) (2012) 61-68. [41] P. Valluri, O.K. Matar, G.F. Hewitt, M.A. Mendes, Thin film flow over structured packings at moderate Reynolds numbers, Chem. Eng. Sci. 60(7) (2005) 1965-1975. |
[1] | Shivanand M. Teli, Channamallikarjun S. Mathpati. Experimental and Numerical Study of Gas-Liquid Flow in a Sectionalized External-Loop Airlift Reactor [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 39-60. |
[2] | Lei Liu, Zhenshan Li, Ye Li, Ningsheng Cai. Evaluation of oxygen uncoupling characteristics of oxygen carrier using micro-fluidized bed thermogravimetric analysis [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 408-415. |
[3] | Shuren Yan, Peng Xiao, Ding Zhu, Hai Li, Guangjin Chen, Bei Liu. A large-scale experimental study on CO2 capture utilizing slurry-based ab-adsorption approach [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 56-66. |
[4] | Yuanyue Zhao, Yihui Dong, Yandong Guo, Feng Huo, Fang Yan, Hongyan He. Recent progress of green sorbents-based technologies for low concentration CO2 capture [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 113-125. |
[5] | Zihao Yao, Jinyan Zhao, Chenxia Zhao, Shengwei Deng, Guilin Zhuang, Xing Zhong, Zhongzhe Wei, Yang Li, Shibin Wang, Jianguo Wang. A first-principles study of reaction mechanism over carbon decorated oxygen-deficient TiO2 supported Pd catalyst in direct synthesis of H2O2 [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 126-134. |
[6] | Rongyue Sun, Hongliang Zhu, Rui Xiao. Enhancement of CO2 capture and microstructure evolution of the spent calcium-based sorbent by the self-reactivation process [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 160-166. |
[7] | Vafa Feyzi, Vahid Mohebbi. Experimental and modeling study of the kinetics of methane hydrate formation and dissociation [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 365-374. |
[8] | Kai Wang, Huiyan Zhang, Sheng Chu, Zhenting Zha. Pyrolysis of single large biomass particle: Simulation and experiments [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 375-382. |
[9] | Xiaoyu Wang, Haibo Zhao, Mingze Su. A comparative process simulation study of Ca—Cu looping involving post-combustion CO2 capture [J]. Chinese Journal of Chemical Engineering, 2020, 28(9): 2382-2390. |
[10] | Asmaa Hadane, Lhachmi Khamar, Saad Benjelloun, Abderrahman Nounah, Mohammed Khamar. CFD investigation of the agitation in the desupersaturation during the wet-process phosphoric acid (WPPA) process [J]. Chinese Journal of Chemical Engineering, 2020, 28(8): 2064-2074. |
[11] | Lubna Ghalib, Ahmed Abdulkareem, Brahim Si Ali, Shaukat Ali Mazari. Modeling the rate of corrosion of carbon steel using activated diethanolamine solutions for CO2 absorption [J]. Chinese Journal of Chemical Engineering, 2020, 28(8): 2099-2110. |
[12] | Hongyan Liu, Zhuo Li, Shujun Geng, Fei Gao, Taobo He, Qingshan Huang. Influences of top clearance and liquid throughput on the performances of an external loop airlift slurry reactor integrated mixing and separation [J]. Chinese Journal of Chemical Engineering, 2020, 28(6): 1514-1521. |
[13] | Jiale Zheng, Wenli Song, Lin Du, Lina Wang, Songgeng Li. Desorption of VOC from polymer adsorbent in multistage fluidized bed [J]. Chinese Journal of Chemical Engineering, 2020, 28(6): 1709-1716. |
[14] | Lan Li, Xiaoting Huang, Quanda Jiang, Luyue Xia, Jiawei Wang, Ning Ai. New process development and process evaluation for capturing CO2 in flue gas from power plants using ionic liquid [emim][Tf2N] [J]. Chinese Journal of Chemical Engineering, 2020, 28(3): 721-732. |
[15] | Xiao Xu, Junjie Wang, Qiang Yang, Lei Wang, Hao Lu, Honglai Liu, Hualin Wang. Bubble size fractal dimension, gas holdup, and mass transfer in a bubble column with dual internals [J]. Chinese Journal of Chemical Engineering, 2020, 28(12): 2968-2976. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||