Chinese Journal of Chemical Engineering ›› 2019, Vol. 27 ›› Issue (10): 2397-2406.doi: 10.1016/j.cjche.2019.01.027
• Separation Science and Engineering • Previous Articles Next Articles
Rashid Ur Rehman, Qingnan Song, Li Peng, Yang Chen, Xuehong Gu
Received:
2018-11-19
Revised:
2019-01-26
Online:
2019-10-28
Published:
2020-01-17
Contact:
Xuehong Gu
E-mail:xuehonggu@yahoo.com
Supported by:
Rashid Ur Rehman, Qingnan Song, Li Peng, Yang Chen, Xuehong Gu. Hydrophobic modification of SAPO-34 membranes for improvement of stability under wet condition[J]. Chinese Journal of Chemical Engineering, 2019, 27(10): 2397-2406.
[1] M. Yu, R.D. Noble, J.L. Falconer, Zeolite membranes:Microstructure characterization and permeation mechanisms, Acc. Chem. Res. 44(2011) 1196-1206. [2] S. Basu, A.L. Khan, A. Cano-Odena, C. Liu, I.F.J. Vankelecom, Membrane-based technologies for biogas separations, Chem. Soc. Rev. 39(2010) 750-768. [3] N. Kosinov, J. Gascon, F. Kapteijn, E.J.M. Hensen, Recent developments in zeolite membranes for gas separation, J. Membr. Sci. 499(2016) 65-79. [4] K.C. Khulbe, T. Matsuura, C.Y. Feng, A.F. Ismail, Recent development on the effect of water/moisture on the performance of zeolite membrane and MMMs containing zeolite for gas separation:Review, RSC Adv. 6(2016) 42943-42961. [5] R. Ur Rehman, S. Rafiq, N. Muhammad, A.L. Khan, A. Ur Rehman, L. TingTing, M. Saeed, F. Jamil, M. Ghauri, X. Gu, Development of ethanolamine-based ionic liquid membranes for efficient CO2/CH4 separation, J. Appl. Polym. Sci. 134(2017), 45395. [6] B. Li, Y. Duan, D. Luebke, B. Morreale, Advances in CO2 capture technology:A patent review, Appl. Energy 102(2013) 1439-1447. [7] C.A. Scholes, G.W. Stevens, S.E. Kentish, Membrane gas separation applications in natural gas processing, Fuel 96(2012) 15-28. [8] B. Liu, R. Zhou, N. Bu, Q. Wang, S. Zhong, B. Wang, K. Hidetoshi, Room-temperature ionic liquids modified zeolite SSZ-13 membranes for CO2/CH4 separation, J. Membr. Sci. 524(2017) 12-19. [9] P.C. Tan, B.S. Ooi, A.L. Ahmad, S.C. Low, Monomer atomic configuration as key feature in governing the gas transport behaviors of polyimide membrane, J. Appl. Polym. Sci. 135(2018), 46073. [10] D.F. Sanders, Z.P. Smith, R. Guo, L.M. Robeson, J.E. McGrath, D.R. Paul, B.D. Freeman, Energy-efficient polymeric gas separation membranes for a sustainable future:A review, Polymer 54(2013) 4729-4761. [11] S. Li, J.L. Falconer, R.D. Noble, SAPO-34 membranes for CO2/CH4 separation, J. Membr. Sci. 241(2004) 121-135. [12] Z. Hong, F. Sun, D. Chen, C. Zhang, X. Gu, N. Xu, Improvement of hydrogenseparating performance by on-stream catalytic cracking of silane over hollow fiber MFI zeolite membrane, Int. J. Hydrog. Energy 38(2013) 8409-8414. [13] L. Wang, C. Zhang, X. Gao, L. Peng, J. Jiang, X. Gu, Preparation of defect-free DDR zeolite membranes by eliminating template with ozone at low temperature, J. Membr. Sci. 539(2017) 152-160. [14] Y. Liu, Z. Yang, C. Yu, X. Gu, N. Xu, Effect of seeding methods on growth of NaA zeolite membranes, Microporous Mesoporous Mater. 143(2011) 348-356. [15] Z. Hong, C. Zhang, X. Gu, W. Jin, N. Xu, A simple method for healing nonzeolitic pores of MFI membranes by hydrolysis of silanes, J. Membr. Sci. 366(2011) 427-435. [16] C. Zhang, Z. Hong, X. Gu, Z. Zhong, W. Jin, N. Xu, Silicalite-1 zeolite membrane reactor packed with HZSM-5 catalyst for meta-xylene isomerization, Ind. Eng. Chem. Res. 48(2009) 4293-4299. [17] M. Pera-Titus, Porous inorganic membranes for CO2 capture:Present and prospects, Chem. Rev. 114(2014) 1413-1492. [18] X. Gao, B. Gao, X. Wang, R. Shi, R. Ur Rehman, X. Gu, The influence of cation treatments on the pervaporation dehydration of NaA zeolite membranes prepared on hollow fibers, PRO 6(2018) 70. [19] M.A. Carreon, S. Li, J.L. Falconer, R.D. Noble, Alumina-supported SAPO-34 membranes for CO2/CH4 separation, J. Am. Chem. Soc. 130(2008) 5412-5413. [20] R. Zhou, E.W. Ping, H.H. Funke, J.L. Falconer, R.D. Noble, Improving SAPO-34 membrane synthesis, J. Membr. Sci. 444(2013) 384-393. [21] O. Cheung, N. Hedin, Zeolites and related sorbents with narrow pores for CO2 separation from flue gas, RSC Adv. 4(2014) 14480-14494. [22] J.C. Poshusta, R.D. Noble, J.L. Falconer, Characterization of SAPO-34 membranes by water adsorption, J. Membr. Sci. 186(2001) 25-40. [23] S. Li, J.G. Martinek, J.L. Falconer, R.D. Noble, T.Q. Gardner, High-pressure CO2/CH4 separation using SAPO-34 membranes, Ind. Eng. Chem. Res. 44(2005) 3220-3228. [24] S. Li, G. Alvarado, R.D. Noble, J.L. Falconer, Effects of impurities on CO2/CH4 separations through SAPO-34 membranes, J. Membr. Sci. 251(2005) 59-66. [25] Y. Chen, Y. Zhang, C. Zhang, J. Jiang, X. Gu, Fabrication of high-flux SAPO-34 membrane on α-Al2O3 four-channel hollow fibers for CO2 capture from CH4, J. CO2 Util. 18(2017) 30-40. [26] S. Li, C.Q. Fan, High flux SAPO-34 membrane for CO2/N2 separation, Ind. Eng. Chem. Res. 49(2010) 4399-4404. [27] R. Vomscheid, M. Briend, M.J. Peltre, P. Massiani, P.P. Man, D. Barthomeuf, Reversible modification of the Si environment in template free SAPO-34 structure upon hydration-dehydration cycles below ca. 400 K, J. Chem. Soc. (1993) 544-546. [28] M. Briend, R. Vomscheid, M.J. Peltre, P.P. Man, D. Barthomeuf, Influence of the choice of the template on the short and long-term stability of SAPO-34 zeolite, J. Phys. Chem. 99(1995) 8270-8276. [29] M.H. Simonot Grange, A. Waldeck, D. Barthomeuf, G. Weber, Contribution to the study of framework modification of SAPO-34 and SAPO-37 upon water adsorption by thermogravimetry, Thermochim. Acta 329(1999) 77-82. [30] K. Chen, J. Kelsey, J.L. White, L. Zhang, D. Resasco, Water interactions in zeolite catalysts and their hydrophobically modified analogues, ACS Catal. 5(2015) 7480-7487. [31] P.A. Zapata, J. Faria, M.P. Ruiz, R.E. Jentoft, D.E. Resasco, Hydrophobic zeolites for biofuel upgrading reactions at the liquid-liquid interface in water/oil emulsions, J. Am. Chem. Soc. 134(2012) 8570-8578. [32] X. Han, L. Wang, J. Li, X. Zhan, J. Chen, J. Yang, Tuning the hydrophobicity of ZSM-5 zeolites by surface silanization using alkyltrichlorosilane, Appl. Surf. Sci. 257(2011) 9525-9531. [33] A. Sayari, Y. Belmabkhout, Stabilization of amine-containing CO2 adsorbents:Dramatic effect of water vapor, J. Am. Chem. Soc. 132(2010) 6312-6314. [34] Y. Kuwahara, T. Kamegawa, K. Mori, H. Yamashita, Fabrication of hydrophobic zeolites using triethoxyfluorosilane and their application as supports for TiO2 photocatalysts, Chem. Commun. (2008) 4783-4785. [35] L. Huo, P. Du, H. Zhou, K. Zhang, P. Liu, Fabrication and tribological properties of self-assembled monolayer of n-alkyltrimethoxysilane on silicon:effect of SAM alkyl chain length, Appl. Surf. Sci. 396(2017) 865-869. [36] X. Gu, J. Dong, T.M. Nenoff, Synthesis of defect-free FAU-type zeolite membranes and separation for dry and moist CO2/N2 mixtures, Ind. Eng. Chem. Res. 44(2005) 937-944. [37] M.U.M. Junaidi, C.P. Leo, A.L. Ahmad, N.A. Ahmad, Fluorocarbon functionalized SAPO-34 zeolite incorporated in asymmetric mixed matrix membranes for carbon dioxide separation in wet gases, Microporous Mesoporous Mater. 206(2015) 23-33. [38] N.A. Ahmad, C.P. Leo, A.L. Ahmad, Superhydrophobic alumina membrane by steam impingement:Minimum resistance in microfiltration, Sep. Purif. Technol. 107(2013) 187-194. [39] J.C. Poshusta, Vu A. Tuan, J.L. Falconer, R.D. Noble, Synthesis and permeation properties of SAPO-34 tubular membranes, Ind. Eng. Chem. Res. 37(1998) 3924-3929. |
[1] | Mengqian Xie, Fangqin Dai, Yaojie Tu. A numerical study of accelerated moderate or intense low-oxygen dilution (MILD) combustion stability for methane in a lab-scale furnace by off-stoichiometric combustion technology [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 108-118. |
[2] | Xu Tang, Hongguang Zhang, Zhenjiang Guo, Xianren Zhang, Jing Li, Dapeng Cao. Multiplicity of thermodynamic states of van der Waals gas in nanobubbles [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 26-32. |
[3] | Chunmeng Xu, Huimin Yu. Insights into constructing a stable and efficient microbial consortium [J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 112-120. |
[4] | Qinghong Shi, Yan Sun. Protein A-based ligands for affinity chromatography of antibodies [J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 194-203. |
[5] | Xiang Li, Bo Yang, Yaqin Wu, Saisai Lin, Lin Zhang. Homogeneous Co3O4 film electrode with enhanced oxygen evolution electrocatalysis via surface reduction [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 221-227. |
[6] | Mohadeseh Farrokhara, Fatereh Dorosti. New high permeable polysulfone/ionic liquid membrane for gas separation [J]. Chinese Journal of Chemical Engineering, 2020, 28(9): 2301-2311. |
[7] | Lei Miao, Jing Yan, Weiyan Wang, Yanping Huang, Wensong Li, Yunquan Yang. Dehydrogenation of methylcyclohexane over Pt supported on Mg-Al mixed oxides catalyst: The effect of promoter Ir [J]. Chinese Journal of Chemical Engineering, 2020, 28(9): 2337-2342. |
[8] | Xiao Liang, Qing Li, Zhiyuan Shi, Shaowei Bai, Quanshun Li. Immobilization of urease in metal-organic frameworks via biomimetic mineralization and its application in urea degradation [J]. Chinese Journal of Chemical Engineering, 2020, 28(8): 2173-2180. |
[9] | Mohsen Izadi. Effects of porous material on transient natural convection heat transfer of nano-fluids inside a triangular chamber [J]. Chinese Journal of Chemical Engineering, 2020, 28(5): 1203-1213. |
[10] | Ling Zhang, Ligang Wei, Shangru Zhai, Dingwei Zhao, Jian Sun, Qingda An. Hydrogen bond promoted thermal stability enhancement of acetate based ionic liquid [J]. Chinese Journal of Chemical Engineering, 2020, 28(5): 1293-1301. |
[11] | Ronghui Sun, Zhen Fan, Lei Yang, Yuanping Li, Xin Lü, Yang Miao. Metastable state of gas hydrate during decomposition: A novel phenomenon [J]. Chinese Journal of Chemical Engineering, 2020, 28(4): 949-954. |
[12] | Sajjad Hashemi, Javad Saien. Highly efficient[C8mim][Cl] ionic liquid accompanied with magnetite nanoparticles and different salts for interfacial tension reduction [J]. Chinese Journal of Chemical Engineering, 2020, 28(1): 46-53. |
[13] | Yen Khai Chai, How Chun Lam, Chai Hoon Koo, Woei Jye Lau, Soon Onn Lai, Ahmad Fauzi Ismail. Performance evaluation of polyamide nanofiltration membranes for phosphorus removal process and their stability against strong acid/alkali solution [J]. Chinese Journal of Chemical Engineering, 2019, 27(8): 1789-1797. |
[14] | Shouwu Yu, Shujuan Xiao, Zewen Zhao, Xiaowen Huo, Junfu Wei. Microencapsulated ammonium polyphosphate by polyurethane with segment of dipentaerythritol and its application in flame retardant polypropylene [J]. Chinese Journal of Chemical Engineering, 2019, 27(7): 1735-1743. |
[15] | Ning Zhang, Wenxu Qi, Lili Huang, En Jiang, Junjiang Bao, Xiaopeng Zhang, Baigang An, Gaohong He. Review on structural control and modification of graphene oxide-based membranes in water treatment: From separation performance to robust operation [J]. Chinese Journal of Chemical Engineering, 2019, 27(6): 1348-1360. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||