Chinese Journal of Chemical Engineering ›› 2020, Vol. 28 ›› Issue (6): 1483-1491.doi: 10.1016/j.cjche.2020.02.030
• Reviews • Next Articles
Sedigheh Sadegh Hassani1, Maryam Daraee2, Zahra Sobat1
Received:
2018-12-27
Revised:
2019-12-30
Online:
2020-06-28
Published:
2020-07-29
Contact:
Maryam Daraee
E-mail:m20.daraee@gmail.com
Sedigheh Sadegh Hassani, Maryam Daraee, Zahra Sobat. Advanced development in upstream of petroleum industry using nanotechnology[J]. Chinese Journal of Chemical Engineering, 2020, 28(6): 1483-1491.
[1] M. Khalil, B.M. Jan, C.W. Tong, M.A. Berawi, Advanced nanomaterials in oil and gas industry:Design, application and challenges, J. Applied Energy 191(2017) 287-310. [2] R. Kumar, A. Gupta, S.R. Dhakate, Nanoparticles-decorated coal tar pitch-based carbon foam with enhanced electromagnetic radiation absorption capability, J. RSC. Adv 5(2015) 20256-20264. [3] S. Xu, A.H. Habib, A.D. Pickel, M.E. McHenry, Magnetic nanoparticle-based solder composites for electronic packaging applications, J. Prog. Mater. Sci 67(2015) 95-160. [4] B.H. Kim, M.J. Hackett, J. Park, T. Hyeon, Synthesis, characterization, and application of ultrasmall nanoparticles, J. Chem. Mater 26(2014) 59-71. [5] A.R. Barron, Nanotechnology for the Oil and Gas Industry, PhD Thesis, Rice University, Houston, Texas, 2008. [6] R. Saidur, K.Y. Leong, H.A. Mohammad, A review on applications and challenges of nanofluids, J. Renew. Sustain. Energy. Rev 15(2011) 1646-1668. [7] L. Hendraningrat, S. Li, O. Torsaeter, A core investigation of nanofluid enhanced oil recovery, J. Pet. Sci. Eng. 111(2011) 128-138. [8] A.K. Mittal, Y. Christi, U.C. Banerjee, Synthesis of metallic nanoparticles using plant extracts, J. Biotechnol. Adv 31(2013) 346-356. [9] K.N. Thakkar, S.S. Mhatre, R.Y. Parikh, Biological synthesis of metallic nanoparticles, J. Nanomed-Nanotech 6(2010) 257-262. [10] S.K. Maity, J. Ancheyta, G. Marroquin, Catalytic aquathermolysis used for viscosity reduction of heavy crude oils:A review, J. Energy Fuel 24(2010) 2809-2816. [11] G. Schmid, Metal Nanoparticles, Synthesis of, Encyclopedia of Inorganic Chemistry, John Wiley & Sons, Ltd., Hoboken, New Jersey, 2006. [12] M.F. Fakoya, S.N. Shah, P. Harshkumar, Nanotechnology:Innovative applications in the oil & gas industry, Int. J. Glo. Adv. Mat 1(1) (2018) 16-30. [13] L. Fedele, L. Colla, S. Bobbo, S. Barison, F. Agresti, Experimental stability analysis of different water-based nanofluids, Nanoscale. Res. Lett 6(300) (2011) 1-8. [14] N.D. Kandpal, N. Sah, R. Loshali, R. Joshi, J. Prasad, Co-precipitation method of synthesis and characterization of iron oxide nanoparticles, J. Sci. Ind. Res. 73(2014) 87-90. [15] J.S. Basuki, A. Jacquemin, L. Esser, Y. Li, C. Boyer, T.P. Davis, A block copolymerstabilized co-precipitation approach to magnetic iron oxide nanoparticles for potential use as MRI contrast agents, Polym. Chem. 5(2014) 2611-2620. [16] N. Bayal, P. Jeevanandam, Synthesis of TiO2-MgO mixed metal oxide nanoparticles via sol-gel method and studies on their optical properties, Ceram. Int. 40(2014) 15463-15477. [17] A. Kumar, A. Saxena, A. De, R. Shankar, S. Mozumdar, Controlled synthesis of sizetunable nickel and nickel oxide nanoparticles using water-in-oil microemulsions, J. Adv. Nat. Sci:Nanosci. Nanotechnol 4(2013), 025009. [18] Y. Song, X. Li, C. Wei, J. Fu, F. Xu, A green strategy to prepare metal oxide superstructure from metal-organic frameworks, J. Sci. Rep 5(2015) 8401. [19] M. Najafi, A. Abbasi, M. Master-Farahani, J. Janczak, Sonochemical preparation of bimetallic (Cu/Mo) oxide nanoparticles as catalysts for dye degradation under mild conditions, J.Polyhedron 93(2015) 76-83. [20] T.K. Indira, P.K. Laksmi, Magnetic nanoparticles-A review, Int. J. Pharm. Sci. Nanotechnol 3(2010) 1035-1042. [21] H. Soleimani, N. Yahya, M.K. Baig, L. Khodapanah, M. Sabet, Synthesis of carbon nanotubes for oil-wet interfacial tension reduction, J. Oil. Gas. Res 1(2015) 1-5. [22] C. Laurent, E. Flahaut, A. Peigney, The weight and density of carbon nanotubes versus the number of walls and diameter, J. Carbon 48(2010) 2994-2996. [23] J. Prasek, J. Drbohlavova, J. Chomoucka, J. Hubalek, O. Jasek, Methods for carbon nanotubes synthesis-A review, J. Mater. Chem 21(2011) 15872-15884. [24] J.G. Duque, A.N.G. Parra-Vasquez, N. Behabtu, M.J. Green, A.L. Higginbotham, Diameter-dependent solubility of single-walled carbon nanotubes, J. ACS Nano 4(2010) 3063-3072. [25] M. Sadeghalvaad, S. Sabbaghi, The effect of the TiO2/polyacrylamide nanocomposite on water-based drilling fluid properties, J. Powder Technol. 272(2015) 113-119. [26] L.D. Pachon, G. Rothenberg, Transition-metal nanoparticles:Synthesis, stability and the leaching issue, J. Appl. Organomet. Chem 22(2008) 288-299. [27] M. Wilson, K. Kannangara, G. Smith, M. Simmons, B. Raguse, Nanotechnology, Chapman & Hall/CRC, Florida, 2002. [28] C. Oncel, Y. Yurum, Carbon nanotube synthesis via the catalytic CVD method:A review on the effect of reaction parameters, Fullerenes, Nanotubes and Carbon Nanostructures 14(1) (2006) 17-37. [29] A. Shashurin, M. Keidar, Synthesis of 2D materials in arc plasmas, J. Phys. D. Appl. Phys. 48(31) (2015), 314007. [30] A.B. Moghaddam, T. Nazari, J. Badraghi, M. Kazemzad, Synthesis of ZnO nanoparticles and electrodeposition of polypyrrole/ZnO nanocomposite, film, Int. J. Electrochem. Sci. 4(2009) 247-257. [31] L.L. Hench, J.K. West, The sol-gel process, J. Chemical reviews 90(1) (1990) 33-72. [32] S. Petrovic, L. Rozic, V. Jovic, S. Stojadinovic, B. Grbić, N. Radić, J. Lamovec, R. Vasilić, Optimization of a nanoparticle ball milling process parameters using the response surface method, J. Adv. Pow. Tech 29(9) (2018) 2129-2139. [33] L. He, J. Xu, D. Bin, Application of nanotechnology in petroleum exploration and development, J. Petrol. Explor. Develop 43(6) (2016) 1107-1115. [34] P. Swaminathan, R. Nagarajan, S. Jitendra, Applications of nanotechnology for upstream oil and gas industry, J. Nano. Research 24(2013) 7-15. [35] S. Sainson, Electromagnetic Seabed Logging, A New Tool for Geoscientists, Ed. Springer, eBook ISBN 978-3-319-45355-2, 2017. [36] R.K. Pandey, S. Krishna, J. Rana, N.K. Hazarika, Emerging applications of nanotechnology in oil and gas industry, International Journal For Technological Research In Engineering 3(2016) 2347-4718. [37] R. Krishnamoorti, Extracting the benefits of nanotechnology for the oil industry, J. petro. Tech 58(11) (2006) 24-26. [38] M.N. Agista, K. Guo, Zh. Yu, A state-of-the-art, review of nanoparticles application in petroleum with a focus on enhanced oil recovery, J. Appl. Sci 8(2018) 871. [39] S. Ryoo, A.R. Rahmani, K.Y. Yoon, M. Prodanovic, C. Kotsmar, Theoretical and experimental investigation of the motion of multiphase fluids containing paramagnetic nanoparticles, J. Pet. Sci. Eng 81(2012) 129-144. [40] M.S. Zaman, M.R. Islam, S. Mokhatab, Nanotechnology prospects in the petroleum industry, J. Petroleum Science and Technology 30(2012) 1053-1058. [41] S. Chakraborty, M. Pal, Highly efficient novel carbon monoxide gas sensor based on bismuth ferrite nanoparticles for environmental monitoring, New J. Chem. 42(2018) 7188-7196. [42] M.F. Fakoya, S.N. Shah, Emergence of nanotechnology in the oil and gas industry:Emphasis on the application of silica nanoparticles, J. Petroleum 3(2017) 391-405. [43] N. Chegenizadeh, A. Saeedi, X. Quan, Application of nanotechnology for enhancing oil recovery:A review, J. Petroleum 2(2016) 324-333. [44] L. Morrow, D.K. Potter, Andrew R. Barron, Detection of magnetic nanoparticles against proppant and shale reservoir rocks, J. Experimental Nanoscience 10(2015) 1028-1041. [45] Y.C. Park, J. Paulsen, R.J. Nap, R.D. Whitaker, V. Mathiyazhagan, Adsorption of superparamagnetic iron oxide nanoparticles on silica and calcium carbonate sand, J. ACS 30(3) (2014) 784-792. [46] C. Kotsmar, K.Y. Yoon, H. Yu, S.Y. Ryoo, J. Barth, Stable citrate-coated iron oxide superparamagnetic nanoclusters at high salinity, J. Ind. Eng. Chem. Res 49(2010) 12435-12443. [47] B. Urasinska-Wojcik, T. Vincent, J.W. Gardner, H2S sensing properties of WO3 based gas sensor, J. Procedia Engineering 168(2016) 255-258. [48] M.Z. Atashbar, S. Singamaneni, Room temperature gas sensor based on metallic nanowires, J. Sensor. Actuator. B. Chem 111-112(2005) 13-21. [49] A. Hoel, L.F. Reyes, P. Heszler, V. Lantto, C.G. Granqvist, Nanomaterials for environmental applications:Novel WO3-based gas sensors made by advanced gas deposition, Curr. Appl. Phys. 4(2004) 547-553. [50] E. Rodriguez, R.M. Robert, H. Yu, C. Huh, S.L. Bryant, Enhanced Migration of SurfaceTreated N Nanoparticles in Sedimentary Rocks, Society of Petroleum Engineers, Annual Technical Conference and Exhibition, Orleans, Louisiana, USA, SPE(124418), 2009. [51] M.B. Jacob, J. Yu, W. Lu, E.E. Walsh, L. Zhang, Engineered nanoparticles for hydrocarbon detection in oilfield rocks, J. Int Con Oilfield Chem, Engy Environ. Sci 4(2011) 505-509. [52] S. SadeghHassani, A. Amrollahi, A.M. Rashidi, M. Soleymani, S. Rayatdoost, The effect of nanoparticles on the heat transfer properties of drilling fluids, J. Petroleum Science and Engineering 146(2016) 183-190. [53] D. Domari Ganji, M.M. Peiravi, M. Abbasi, Evaluation of the heat transfer rate increases in retention pools nuclear waste, Int. J. Nano Dimens 6(4) (2015) 385-398. [54] B. Kirubadurai, P. Selvan, V. Vijayakumar, M. Karthik, Heat transfer enhancement of nano-fluid:A review, Int. J. Res. Eng. Technol 3(7) (2014) 483-486. [55] J.K.M. Williama, S. Ponmani, R. Samuel, R. Nagarajanc, J.S. Sangwai, Effect of CuO and ZnO nanofluids in xanthan gum on thermal, electrical and high pressure rheology of water-based drilling fluids, J. Petro. Sci. Eng 117(2014) 15-27. [56] L.L. Ionscu Vasii, A. Fatseyeu, Electrical conductivity of oil base drilling fluids containing carbon nanotubes, US Pat. 20110111988(2011). [57] M. Sedaghatzadeh, A.A. Khodadadi, M.R. Tahmasebi Birgani, An improvement in thermal and rheological properties of water based drilling fluids using multi wall carbon nanotube (MWCNT), Iran. J. Oil Gas Sci. Technol 1(1) (2012) 55-65. [58] H. Xie, W. Yu, Y. Li, L. Chen, Discussion on the thermal conductivity enhancement of nanofluids, Nanoscale Res. Lett 6(2011) 124. [59] J. Abdo, M.D. Haneef, Clay nano-particles modified drilling fluids for drilling of deep hydrocarbon wells, J. Appl. Clay. Sci 86(2013) 76-82. [60] J. Abdo, M. Haneef, Nano-enhanced drilling fluids:pioneering approach to overcome uncompromising drilling problems, J. Energy. Resour. Technol 134(1) (2012) (014501). [61] R. Saboori, S. Sabbaghi, D. Mowla, A. Soltani, Decreasing of water loss and mud cake thickness by CMC nanoparticles in mud drilling, Int. J. Nano. Dimens. 3(2) (2012) 101-104. [62] J. Nasser, A. Jesil, T. Mohiuddin, M. Al-Ruqeshi, G. Devi, Experimental investigation of drilling fluid performance as nanoparticles, World J. Nano Science and Engineering 3(3) (2013) 57-61. [63] Y.H. Chai, S. Yusup, W. Soon Chok, A review on nanoparticle addition in base fluid for improvement of biodegradable ester-based drilling fluid properties, J. Chem Eng Trans 45(2015) 1447-1452. [64] K.Q. Ma, J. Liu, Nano liquid-metal fluid as ultimate coolant, J. Phys. Lett. A. 361(3) (2007) 252-256. [65] D. Ashtiani, M.A. Akhavan-Behabadi, M. Fakoor Pakdaman, An experimental investigation on heat transfer characteristics of multi-walled CNT-heat transfer oil nanofluid flow inside flattened tubes under uniform wall temperature condition, Int. Commun. Heat Mass. Transf 39(2012) 1404-1409. [66] J.B. Crews, T. Huang, Use of nano-sized phyllosilicate minerals in viscoelastic surfactant fluids, US Pat. 9145510(2011) B2. [67] J.B. Crews, T. Huang, Use of Nano-sized Clay Minerals in Viscoelastic Surfactant Fluids, US Pat. 20080300153(2008) A1. [68] B. Peng, L. Zhang, J. Luo, P. Wang, B. Ding, M. Zeng, Zhengdong. Cheng, A review of nanomaterials for nanofluid enhanced oil recovery, J. RSC. Adv 7(2017) 32246. [69] L. Hendraningrat, O. Torsæter, Metal oxide-based nanoparticles:Revealing their potential to enhance oil recovery in different wettability systems, Appl. Nanosci 5(2) (2015) 181-199. [70] X. Sun, Y. Zhang, G. Chen, Zh. Gai, Application of nanoparticles in enhanced oil recovery:A critical review of recent progress, J. Energies 10(3) (2017) 345. [71] A. Bera, H. Belhaj, Application of nanotechnology by means of nanoparticles and nanodispersions in oil recovery-A comprehensive review, J. Natural Gas Science and Engineering 34(2016) 1284-1309. |
[1] | Chuanshuai Dong, Lin Lu, Tao Wen, Shaojie Zhang. Thermal performance assessment of self-rotating twisted tapes and Al2O3 nanoparticle in a circular pipe [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 77-86. |
[2] | Yanyong Li, Meng Ge, Jiameng Wang, Mengquan Guo, Fanji Liu, Mingxun Han, Yanhong Xu, Lihong Zhang. Dehydrogenation of isobutane to isobutene over a Pt-Cu bimetallic catalyst in the presence of LaAlO3 perovskite [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 203-211. |
[3] | Tadele Daniel Mekuria, Lei Wang, Chunhong Zhang, Ming Yang, Qingtao Lv, Diaa Eldin Fouad. Synthesis and characterization of high strength polyimide/silicon nitride nanocomposites with enhanced thermal and hydrophobic properties [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 446-453. |
[4] | M. Ijaz Khan, Seifedine Kadry, Yuming Chu, M. Waqas. Modeling and numerical analysis of nanoliquid (titanium oxide, graphene oxide) flow viscous fluid with second order velocity slip and entropy generation [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 17-25. |
[5] | Kai Ge, Yuanhui Ji, Xiaohua Lu. A novel interfacial thermodynamic model for predicting solubility of nanoparticles coated by stabilizers [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 103-112. |
[6] | Kok Bing Tan, Daohua Sun, Jiale Huang, Tareque Odoom-Wubah, Qingbiao Li. State of arts on the bio-synthesis of noble metal nanoparticles and their biological application [J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 272-290. |
[7] | Jing Zhao, Zhiguang Duan, Xiaoxuan Ma, Yannan Liu, Daidi Fan. Recent advances in systemic and local delivery of ginsenosides using nanoparticles and nanofibers [J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 291-300. |
[8] | Racheal Aigbe, Doga Kavaz. Unravel the potential of zinc oxide nanoparticle-carbonized sawdust matrix for removal of lead (II) ions from aqueous solution [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 92-102. |
[9] | Najeebullah Lashari, Tarek Ganat. Emerging applications of nanomaterials in chemical enhanced oil recovery: Progress and perspective [J]. Chinese Journal of Chemical Engineering, 2020, 28(8): 1995-2009. |
[10] | Xinyan Chen, Bin He, Mi Feng, Dingwei Zhao, Jian Sun. Immobilized laccase on magnetic nanoparticles for enhanced lignin model compounds degradation [J]. Chinese Journal of Chemical Engineering, 2020, 28(8): 2152-2159. |
[11] | Elaine C. Paris, João O. D. Malafatti, Henrique C. Musetti, Alexandra Manzoli, Alessandra Zenatti, Márcia T. Escote. Faujasite zeolite decorated with cobalt ferrite nanoparticles for improving removal and reuse in Pb2+ ions adsorption [J]. Chinese Journal of Chemical Engineering, 2020, 28(7): 1884-1890. |
[12] | Yi Xiong, Liping Huang, Sakil Mahmud, Feng Yang, Huihong Liu. Bio-synthesized palladium nanoparticles using alginate for catalytic degradation of azo-dyes [J]. Chinese Journal of Chemical Engineering, 2020, 28(5): 1334-1343. |
[13] | Zheng Zhang, Yuanhui Ji, Wei Chen. Hollow MnO2/GNPs serving as a multiresponsive nanocarrier for controlled drug release [J]. Chinese Journal of Chemical Engineering, 2020, 28(5): 1405-1414. |
[14] | Wei Tao, Aili Wang, Hengbo Yin. Interaction between Pd and Cu nanoparticles in bimetallic CuPdx nanoparticles and its impact on oxidation of 1,2-propanediol to aliphatic acids [J]. Chinese Journal of Chemical Engineering, 2020, 28(4): 1085-1094. |
[15] | Liang Yang, Xin Wang, Daoping Liu, Guomin Cui, Binlin Dou, Juan Wang, Shuqing Hao. Accelerated methane storage in clathrate hydrates using surfactantstabilized suspension with graphite nanoparticles [J]. Chinese Journal of Chemical Engineering, 2020, 28(4): 1112-1119. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||