Chinese Journal of Chemical Engineering ›› 2020, Vol. 28 ›› Issue (8): 1995-2009.doi: 10.1016/j.cjche.2020.05.019
• Reviews • Next Articles
Najeebullah Lashari1,2, Tarek Ganat1
Received:
2020-04-14
Revised:
2020-05-14
Online:
2020-08-28
Published:
2020-09-19
Contact:
Najeebullah Lashari
E-mail:najeeb_17007123@utp.edu.my
Najeebullah Lashari, Tarek Ganat. Emerging applications of nanomaterials in chemical enhanced oil recovery: Progress and perspective[J]. Chinese Journal of Chemical Engineering, 2020, 28(8): 1995-2009.
[1] A. Al Adasani, B. Bai, Analysis of EOR projects and updated screening criteria, J. Pet. Sci. Eng. 79(2011) 10-24. [2] X. Kang, J. Zhang, F. Sun, F. Zhang, G. Feng, J. Yang, X. Zhang, W. Xiang, A Review of Polymer EOR on Offshore Heavy Oil Field in Bohai Bay, China, in:SPE Enhanced Oil Recovery Conference, Society of Petroleum Engineers 2011. [3] M.S. Kamal, A.S. Sultan, U.A. Al-Mubaiyedh, I.A.J.P.R. Hussein, Review on polymer flooding:rheology, adsorption, stability, and field applications of various polymer systems, Polm. Rev 55(2015) 491-530. [4] L.W. Lake, J.R. Fanchi, K. Arnold, J.D. Clegg, E.D. Holstein, H.R. Warner, Petroleum Engineering Handbook:Reservoir Engineering and Petrophysics, Society of Petroleum Engineers 2007. [5] J.J. Sheng, B. Leonhardt, N. Azri, Status of polymer-flooding technology, J. Can. Pet. Technol. 54(2015) 116-126. [6] S. Fakher, M. Ahdaya, A. Imqam, Hydrolyzed polyacrylamide-fly ash reinforced polymer for chemical enhanced oil recovery:part 1-injectivity experiments, Fuel 260(2020) 116310. [7] A.M. Maia, R. Borsali, R.C. Balaban, Comparison between a polyacrylamide and a hydrophobically modified polyacrylamide flood in a sandstone core, Mater. Sci. Eng:C 29(2009) 505-509. [8] P. Raffa, A.A. Broekhuis, F. Picchioni, Polymeric surfactants for enhanced oil recovery:a review, J. Pet. Sci. Eng. 145(2016) 723-733. [9] R. Saha, R.V.S. Uppaluri, P. Tiwari, Silica nanoparticle assisted polymer flooding of heavy crude oil:emulsification, rheology, and wettability alteration characteristics, Ind. Eng. Chem. 57(2018) 6364-6376. [10] B. Shaker Shiran, A. Skauge, Enhanced oil recovery (EOR) by combined low salinity water/polymer flooding, Energ. Fuel 27(2013) 1223-1235. [11] Z. Ye, G. Gou, S. Gou, W. Jiang, T. Liu, Synthesis and characterization of a watersoluble sulfonates copolymer of acrylamide and N-allylbenzamide as enhanced oil recovery chemical, J. Appl. Polym. Sci. 128(2013) 2003-2011. [12] X. Sun, Y. Zhang, G. Chen, Z. Gai, Application of nanoparticles in enhanced oil recovery:a critical review of recent progress, Energies 10(2017) 345. [13] N.C. Mueller, B. Van Der Bruggen, V. Keuter, P. Luis, T. Melin, W. Pronk, R. Reisewitz, D. Rickerby, G.M. Rios, W. Wennekes, Nanofiltration and nanostructured membranes-should they be considered nanotechnology or not? J. Hazard. Mater. 211(2012) 275-280. [14] M. Sabet, S. Hosseini, A. Zamani, Z. Hosseini, H. Soleimani, Application of nanotechnology for enhanced oil recovery:a review, in:Defect and Diffusion Forum, Trans. Tech. Publ. (2016) 149-156. [15] S. Mokhatab, M.A. Fresky, M.R. Islam, Applications of nanotechnology in oil and gas E&P, J. Pet. Technol. 58(2006) 48-51. [16] G.L. Hornyak, H.F. Tibbals, J. Dutta, J.J. Moore, Introduction to Nanoscience and Nanotechnology, CRC press, 2008. [17] C. Negin, S. Ali, Q. Xie, Application of nanotechnology for enhancing oil recovery-a review, Petroleum 2(2016) 324-333. [18] K. Zhou, X. Zhou, J. Liu, Z. Huang, Application of magnetic nanoparticles in petroleum industry:a review, J. Pet. Sci. Eng. 188(2020) 106943. [19] G. Cheraghian, L. Hendraningrat, A review on applications of nanotechnology in the enhanced oil recovery part B:effects of nanoparticles on flooding, Int. Nano Lett 6(2015) 1-10. [20] P.M. McElfresh, D.L. Holcomb, D. Ector, Application of Nanofluid Technology to Improve Recovery in Oil and Gas Wells, in:SPE International Oilfield Nanotechnology Conference and Exhibition, Society of Petroleum Engineers 2012. [21] Society of Petroleum Engineers, OnePetro, in, 2020. [22] A. Maghzi, R. Kharrat, A. Mohebbi, M.H. Ghazanfari, The impact of silica nanoparticles on the performance of polymer solution in presence of salts in polymer flooding for heavy oil recovery, Fuel 123(2014) 123-132. [23] I.-Y. Jeon, J.-B. Baek, Nanocomposites derived from polymers and inorganic nanoparticles, Materials 3(2010) 3654-3674. [24] G.G. Silva, A. De Oliveira, V. Caliman, M.M. Viana, M.C.F. Soares, Improvement of Viscosity and Stability of Polyacrylamide Aqueous Solution Using Carbon Black as a Nano-Additive, in:OTC Brasil, Offshore Technology Conference 2013. [25] H.C. Lau, M. Yu, Q.P. Nguyen, Nanotechnology for oilfield applications:challenges and impact, J. Pet. Sci. Eng. 157(2017) 1160-1169. [26] H. Zhang, A. Nikolov, D. Wasan, Enhanced oil recovery (EOR) using nanoparticle dispersions:underlying mechanism and imbibition experiments, Energ. Fuel 28(2014) 3002-3009. [27] M. Zargartalebi, R. Kharrat, N. Barati, Enhancement of surfactant flooding performance by the use of silica nanoparticles, Fuel 143(2015) 21-27. [28] R. Li, P. Jiang, C. Gao, F. Huang, R. Xu, X. Chen, Experimental investigation of silicabased nanofluid enhanced oil recovery:the effect of wettability alteration, Energ. Fuel 31(2016) 188-197. [29] J.A. Ali, K. Kolo, A.K. Manshad, A.H. Mohammadi, Recent advances in application of nanotechnology in chemical enhanced oil recovery:Effects of nanoparticles on wettability alteration, interfacial tension reduction, and flooding, Egypt. J. Pet 27(4) (2018) 1371-1383. [30] A.O. Gbadamosi, R. Junin, M.A. Manan, N. Yekeen, A. Agi, J.O. Oseh, Recent advances and prospects in polymeric nanofluids application for enhanced oil recovery, Ind. Eng. Chem. 66(2018) 1-19. [31] J.R. Nezhad, A. Jafari, M. Abdollahi, Proficiency Feasibility of Multi-Walled Carbon Nanotubes in the Presence of Polymeric Surfactant on Enhanced Oil Recovery, in:AIP Conf, AIP Publishing, Proc., 201820031. [32] Y. Kazemzadeh, S. Shojaei, M. Riazi, M. Sharifi, Review on application of nanoparticles for EOR purposes:a critical review of the opportunities and challenges, Chin. J. Chem. Eng. 27(2019) 237-246. [33] A. Maghzi, S. Mohammadi, M.H. Ghazanfari, R. Kharrat, M. Masihi, Monitoring wettability alteration by silica nanoparticles during water flooding to heavy oils in five-spot systems:a pore-level investigation, Exp. Thermal Fluid Sci. 40(2012) 168-176. [34] M.S. Alnarabiji, N. Yahya, A. Shafie, H. Solemani, K. Chandran, S.B.A. Hamid, K. Azizi, The influence of hydrophobic multiwall carbon nanotubes concentration on enhanced oil recovery, Procedia. Eng 148(2016) 1137-1140. [35] Z. Hu, E. Nourafkan, H. Gao, D. Wen, Microemulsions stabilized by in-situ synthesized nanoparticles for enhanced oil recovery, Fuel 210(2017) 272-281. [36] G.J.P.S. Cheraghian, Technology, effects of titanium dioxide nanoparticles on the efficiency of surfactant flooding of heavy oil in a glass micromodel, Pet. Sci. Technol. 34(2016) 260-267. [37] D. Luo, F. Wang, J. Zhu, F. Cao, Y. Liu, X. Li, R.C. Willson, Z. Yang, C.W. Chu, Z. Ren, Nanofluid of graphene-based amphiphilic Janus nanosheets for tertiary or enhanced oil recovery:high performance at low concentration, Proc. Natl. Acad. Sci. U. S. A. 113(2016) 7711-7716. [38] H. Rezvani, M. Riazi, M. Tabaei, Y. Kazemzadeh, M. Sharifi, Experimental investigation of interfacial properties in the EOR mechanisms by the novel synthesized Fe3O4@chitosan nanocomposites, Colloids Surf. Physicochem. Eng. Aspects 544(2018) 15-27. [39] M. Adil, K. Lee, H. Mohd Zaid, N.R. Ahmad Latiff, M.S. Alnarabiji, Experimental study on electromagnetic-assisted ZnO nanofluid flooding for enhanced oil recovery (EOR), PLoS One 13(2018), e0193518.. [40] H. Soleimani, M.K. Baig, N. Yahya, L. Khodapanah, M. Sabet, B.M.R. Demiral, M. Burda, Impact of carbon nanotubes based nanofluid on oil recovery efficiency using core flooding, Results Phys 9(2018) 39-48. [41] S. Tajik, A. Shahrabadi, A. Rashidi, M. Jalilian, A. Yadegari, Application of functionalized silica-graphene nanohybrid for the enhanced oil recovery performance, Colloids Surf. Physicochem. Eng. Aspects 556(2018) 253-265. [42] B. Ju, T. Fan, M.J.C.P. Ma, Enhanced oil recovery by flooding with hydrophilic nanoparticles, China Particuology 4(2006) 41-46. [43] J. Giraldo, P. Benjumea, S. Lopera, F.B. Cortés, M.A. Ruiz, Wettability alteration of sandstone cores by alumina-based nanofluids, Energ. Fuel 27(2013) 3659-3665. [44] T. Sharma, J.S. Sangwai, Silica nanofluids in polyacrylamide with and without surfactant:viscosity, surface tension, and interfacial tension with liquid paraffin, J. Pet. Sci. Eng. 152(2017) 575-585. [45] M.R. Haroun, S. Alhassan, A.A. Ansari, N.A.M. Al Kindy, N. Abou Sayed, A. Kareem, B. Ali, H.K. Sarma, Smart Nano-EOR Process for Abu Dhabi Carbonate Reservoirs, in:Abu Dhabi International Petroleum Conference and Exhibition, Society of Petroleum Engineers 2012. [46] N. Ogolo, O. Olafuyi, M. Onyekonwu, Enhanced Oil Recovery Using Nanoparticles, in:SPE Saudi Arabia Section Technical Symposium and Exhibition, Society of Petroleum Engineers 2012. [47] M.J. Kadhum, D.P. Swatske, C. Chen, D.E. Resasco, J.H. Harwell, B. Shiau, Propagation of Carbon Nanotube Hybrids through Porous Media for Advancing Oilfield Technology, in:SPE International Symposium on Oilfield Chemistry, Society of Petroleum Engineers 2015. [48] D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide, ACS Nano 4(2010) 4806-4814. [49] A.M. Dimiev, L.B. Alemany, J.M. Tour, Graphene oxide. Origin of acidity, its instability in water, and a new dynamic structural model, ACS Nano 7(2013) 576-588. [50] D.V. Kosynkin, G. Ceriotti, K.C. Wilson, J.R. Lomeda, J.T. Scorsone, A.D. Patel, J.E. Friedheim, J.M. Tour, Graphene oxide as a high-performance fluid-loss-control additive in water-based drilling fluids, ACS Appl. mater. Inter 4(2011) 222-227. [51] Y. Zhong, Z. Zhen, H. Zhu, Graphene:fundamental research and potential applications, FlatChem 4(2017) 20-32. [52] A. Hirsch, The era of carbon allotropes, Nat. Mater. 9(2010) 868-871. [53] H. Zhu, Graphene:Fabrication, Characterizations, Properties and Applications, Academic Press, 2017. [54] K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Natur 457(2009) 706-710. [55] K.I. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. Stormer, Ultrahigh electron mobility in suspended graphene, J Solid State Commun 146(2008) 351-355. [56] C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Sci 321(2008) 385-388. [57] A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett. 8(2008) 902-907. [58] M. Salehi, S.J. Johnson, J.T. Liang, Enhanced wettability alteration by surfactants with multiple hydrophilic moieties, J. Surfactant Deterg. 13(2010) 243-246. [59] K. Klouda, E. Zemanova, R. Friedrichova, M. Weisheitova, Fullerene C60, grapheneoxide and graphene-oxide foil with fullerene and their bromination, Int. J. Mater. Sci. Appl. 3(2014) 293-302. [60] J. Kim, L.J. Cote, F. Kim, W. Yuan, K.R. Shull, J. Huang, Graphene oxide sheets at interfaces, JACS 132(2010) 8180-8186. [61] L. Hendraningrat, O. Torsaeter, Unlocking the Potential of Metal Oxides Nanoparticles to Enhance the Oil Recovery, in:Offshore Technology Conference-Asia, Offshore Technology Conference 2014. [62] H. ShamsiJazeyi, C.A. Miller, M.S. Wong, J.M. Tour, R. Verduzco, Polymer-coated nanoparticles for enhanced oil recovery, J. Appl. Polym. Sci. 131(2014). [63] D. Arab, A. Kantzas, S.L. Bryant, Nanoparticle stabilized oil in water emulsions:a critical review, J. Pet. Sci. Eng. 163(2018) 217-242. [64] B.Peng, L. Zhang, J. Luo, P.Wang, B. Ding, M. Zeng,Z. Cheng, A review of nanomaterials for nanofluid enhanced oil recovery, RSC Adv. 7(2017) 32246-32254. [65] A.J. Worthen, H.G. Bagaria, Y. Chen, S.L. Bryant, C. Huh, K.P. Johnston, Nanoparticlestabilized carbon dioxide-in-water foams with fine texture, J. Colloid Interface Sci. 391(2013) 142-151. [66] K. Spildo, A. Skauge, T. Skauge, Propagation of Colloidal Dispersion Gels (CDG) in Laboratory Corefloods, in:SPE Improved Oil Recovery Symposium, Society of Petroleum Engineers 2010. [67] M.F. Haase, D. Grigoriev, H. Moehwald, B. Tiersch, D.G. Shchukin, Encapsulation of amphoteric substances in a pH-sensitive Pickering emulsion, J. Phys. Chem. C 114(2010) 17304-17310. [68] A. Esfandyari Bayat, R. Junin, A. Samsuri, A. Piroozian, M. Hokmabadi, Impact of metal oxide nanoparticles on enhanced oil recovery from limestone media at several temperatures, Energ. Fuel 28(2014) 6255-6266. [69] W. Zhai, G. Li, P. Yu, L. Yang, L. Mao, Silver phosphate/carbon nanotube-stabilized Pickering emulsion for highly efficient photocatalysis, J. Phys. Chem. C 117(2013) 15183-15191. [70] K. Kusanagi, S. Murata, Y. Goi, M. Sabi, K. Zinno, Y. Kato, N. Togashi, T. Matsuoka, Y. Liang, Application of Cellulose Nanofiber as Environment-Friendly Polymer for Oil Development, in:SPE/IATMI Asia Pacific oil & gas Conference and Exhibition, Society of Petroleum Engineers 2015. [71] M.J. Kadhum, D. Swatske, J. Weston, D.E. Resasco, B. Shiau, J.H. Harwell, Polymerstabilized multi-walled carbon nanotube dispersions in high-salinity brines, Energ. Fuel 31(2017) 5024-5030. [72] A.F. Mejia, A. Diaz, S. Pullela, Y.-W. Chang, M. Simonetty, C. Carpenter, J.D. Batteas, M.S. Mannan, A. Clearfield, Z. Cheng, Pickering emulsions stabilized by amphiphilic nano-sheets, Soft Matter 8(2012) 10245-10253. [73] R.S. Infant, L. Xiao, Future two-dimensional material for enhance oil recovery, Rock Physics and Digital Rock Applications Workshop, Society of Exploration Geophysicists, Bejing, China 2018, pp. 9-12. [74] L. Hendraningrat, S. Li, O. Torsæter, A coreflood investigation of nanofluid enhanced oil recovery, J. Pet. Sci. Eng. 111(2013) 128-138. [75] L. Hendraningrat, S.B. Hansen, M.F. Vatne, P.K. Holøyen, M. Saeed, M. Undheim, Ø. Flagstad, R. Andersen, C. Wärdig, M. Johansson, Unlocking the Potential of Hydrophilic Nanoparticles as Novel Enhanced Oil Recovery Method:An Experimental Investigation, PhD Thesis, Norwegian University of Science and Technology, Trondheim, 2015. [76] M.Y. Kanj, J.J. Funk, Z. Al-Yousif, Nanofluid Coreflood Experiments in the ARAB-D, in:SPE Saudi Arabia Section Technical Symposium, Society of Petroleum Engineers 2009. [77] L. Hendraningrat, S. Li, O. Torsater, Effect of some Parameters Influencing Enhanced Oil Recovery Process Using Silica Nanoparticles:An Experimental Investigation, in:SPE Reservoir Characterization and Simulation Conference and Exhibition, Society of Petroleum Engineers 2013. [78] M.B. Abdullahi, K. Rajaei, R. Junin, A.E. Bayat, Appraising the impact of metal-oxide nanoparticles on rheological properties of HPAM in different electrolyte solutions for enhanced oil recovery, J. Pet. Sci. Eng. 172(2019) 1057-1068. [79] B. Wei, L. Romero-Zerón, D. Rodrigue, Oil displacement mechanisms of viscoelastic polymers in enhanced oil recovery (EOR):a review, Journal of Petroleum Exploration Production Technology 4(2014) 113-121. [80] A.Z. Abidin, T. Puspasari, W.A. Nugroho, Polymers for enhanced oil recovery technology, Procedia Chem. 4(2012) 11-16. [81] J. Sheng, Modern Chemical Enhanced Oil Recovery:Theory and Practice, Gulf Professional Publishing, 2010. [82] G.P. Willhite, J.G. Dominguez, Mechanisms of Polymer Retention in Porous Media, in:Improved Oil Recovery By Surfactant and Polymer Flooding, Elsevier, 1977511-554. [83] M. Rashidi, A.M. Blokhus, A. Skauge, Viscosity and retention of sulfonated polyacrylamide polymers at high temperature, J. Appl. Polym. Sci. 119(2011) 3623-3629. [84] R. Khoramian, A. Ramazani S. A, M. Hekmatzadeh, R. Kharrat, E. Asadian, Graphene oxide nanosheets for oil recovery, ACS Appl. Nano Mater 2(2019) 5730-5742. [85] S.K. Choi, H.A. Son, H.T. Kim, J.W. Kim, Nanofluid enhanced oil recovery using hydrophobically associative zwitterionic polymer-coated silica nanoparticles, Energ. Fuel 31(2017) 7777-7782. [86] D.W. Lee, B.R. Yoo, Advanced silica/polymer composites:materials and applications, Ind. Eng. Chem. 38(2016) 1-12. [87] P. Krasucka, W. Stefaniak, A. Kierys, J. Goworek, Polymer-silica composites and silicas produced by high-temperature degradation of organic component, Thermochim. Acta 615(2015) 43-50. [88] M. Mohammed, T. Babadagli, Wettability alteration:a comprehensive review of materials/methods and testing the selected ones on heavy-oil containing oil-wet systems, Adv. Colloid Interf. Sci. 220(2015) 54-77. [89] A.M. Alhammadi, A. AlRatrout, K. Singh, B. Bijeljic, M.J. Blunt, In situ characterization of mixed-wettability in a reservoir rock at subsurface conditions, Sci. Rep. 7(2017) 10753. [90] M. Khalil, B.M. Jan, C.W. Tong, M.A. Berawi, Advanced nanomaterials in oil and gas industry:design, application and challenges, ApEn 191(2017) 287-310. [91] B. Ju, T. Fan, Z. Li, Improving water injectivity and enhancing oil recovery by wettability control using nanopowders, J. Pet. Sci. Eng. 86(2012) 206-216. [92] M. Almahfood, B. Bai, The synergistic effects of nanoparticle-surfactant nanofluids in EOR applications, J. Pet. Sci. Eng. 171(2018) 196-210. [93] A. Karimi, Z. Fakhroueian, A. Bahramian, N. Pour Khiabani, J.B. Darabad, R. Azin, S. Arya, Wettability alteration in carbonates using zirconium oxide nanofluids:EOR implications, Energ Fuel 26(2012) 1028-1036. [94] R. Nazari Moghaddam, A. Bahramian, Z. Fakhroueian, A. Karimi, S. Arya, Comparative study of using nanoparticles for enhanced oil recovery:wettability alteration of carbonate rocks, Energ. Fuel 29(2015) 2111-2119. [95] H. Radnia, A.R. Solaimany Nazar, A. Rashidi, Experimental assessment of graphene oxide adsorption onto sandstone reservoir rocks through response surface methodology, J. Taiwan. Inst. Chem. E 80(2017) 34-45. [96] M. Seid Mohammadi, J. Moghadasi, S. Naseri, An experimental investigation of wettability alteration in carbonate reservoir using γ-Al2O3 nanoparticles, Iranian Journal of Oil & Gas Science and Technology 3(2014) 18-26. [97] S. Azarshin, J. Moghadasi, Z.A. Aboosadi, Surface functionalization of silica nanoparticles to improve the performance of water flooding in oil wet reservoirs, Energ. Explor. Exploit 35(2017) 685-697. [98] H. Yousefvand, A. Jafari, Enhanced oil recovery using polymer/nanosilica, Procedia Mater. Sci. 11(2015) 565-570. [99] A. Maghzi, A. Mohebbi, R. Kharrat, M.H. Ghazanfari, Pore-scale monitoring of wettability alteration by silica nanoparticles during polymer flooding to heavy oil in a five-spot glass micromodel, TPM 87(2011) 653-664. [100] M. Sedaghat, H. Mohammadi, R.J.E.S. Razmi, Part A:Recovery, Utilization,, E. Effects, Application of SiO2 and TiO2 nano particles to enhance the efficiency of polymersurfactant floods, 38(2016) 22-28. [101] H. ShamsiJazeyi, C.A. Miller, M.S. Wong, J.M. Tour, R. Verduzco, Polymer-coated nanoparticles for enhanced oil recovery, J. Appl. Polym. Sci. 131(2014) 40576. [102] M. Zeyghami, R. Kharrat, M. Ghazanfari, Investigation of the applicability of nano silica particles as a thickening additive for polymer solutions applied in EOR processes, Energ. Source. Part. A 36(2014) 1315-1324. [103] B.D. Nguyen, T.K. Ngo, T.H. Bui, D.K. Pham, X.L. Dinh, P.T. Nguyen, The impact of graphene oxide particles on viscosity stabilization for diluted polymer solutions using in enhanced oil recovery at HTHP offshore reservoirs, Adv. Nat Sci. Nano Sci 6(2014), 015012.. [104] Z. Hu, M. Haruna, H. Gao, E. Nourafkan, D. Wen, Rheological properties of partially hydrolyzed polyacrylamide seeded by nanoparticles, Ind. Eng. Chem. 56(2017) 3456-3463. [105] M.A. Haruna, S. Pervaiz, Z. Hu, E. Nourafkan, D. Wen, Improved rheology and hightemperature stability of hydrolyzed polyacrylamide using graphene oxide nanosheet, J. Appl. Polym. Sci. 136(2019) 47582. [106] P. Tongwa, R. Nygaard, B. Bai, Evaluation of a nanocomposite hydrogel for water shut-off in enhanced oil recovery applications:design, synthesis, and characterization, J. Appl. Polym. Sci. 128(2013) 787-794. [107] R. Liu, S. Liang, X.-Z. Tang, D. Yan, X. Li, Z.-Z. Yu, Tough and highly stretchable graphene oxide/polyacrylamide nanocomposite hydrogels, J. Mater. Chem. 22(2012) 14160-14167. [108] S. Khandavalli, J.P. Rothstein, Extensional rheology of shear-thickening fumed silica nanoparticles dispersed in an aqueous polyethylene oxide solution, J. Rheol. 58(2014) 411-431. [109] G. Cheraghian, Thermal resistance and application of nanoclay on polymer flooding in heavy oil recovery, Petrol. Sci. Technol 33(2015) 1580-1586. [110] M. Tarek, A.H. El-Banbi, Comprehensive Investigation of Effects of Nano-Fluid Mixtures to Enhance Oil Recovery, in:SPE North Africa Technical Conference and Exhibition, Society of Petroleum Engineers 2015. [111] L.J. Giraldo, M.A. Giraldo, S. Llanos, G. Maya, R.D. Zabala, N.N. Nassar, C.A. Franco, V. Alvarado, F.B. Cortés, The effects of SiO2 nanoparticles on the thermal stability and rheological behavior of hydrolyzed polyacrylamide based polymeric solutions, J. Pet. Sci. Eng. 159(2017) 841-852. [112] A.A. Olajire, Review of ASP EOR (alkaline surfactant polymer enhanced oil recovery) technology in the petroleum industry:prospects and challenges, Energy 77(2014) 963-982. [113] C. Negin, S. Ali, Q. Xie, Most common surfactants employed in chemical enhanced oil recovery, Petroleum 3(2017) 197-211. [114] I. Nowrouzi, A.K. Manshad, A.H. Mohammadi, Effects of Tragacanth gum as a natural polymeric surfactant and soluble ions on chemical smart water injection into oil reservoirs, JMoSt 1200(2020) 127078. [115] I. Kurnia, G. Zhang, X. Han, J. Yu, Zwitterionic-anionic surfactant mixture for chemical enhanced oil recovery without alkali, Fuel 259(2020) 116236. [116] Q. Li, W. Pu, B. Wei, F. Jin, K. Li, Static adsorption and dynamic retention of an antisalinity polymer in low permeability sandstone core, J. Appl. Polym. Sci., 134(2017). [117] T. Zhang, D. Davidson, S.L. Bryant, C. Huh, Nanoparticle-Stabilized Emulsions for Applications in Enhanced Oil Recovery, in:SPE Improved Oil Recovery Symposium, Society of Petroleum Engineers 2010. [118] K.R. Aurand, G.S. Dahle, O. Torsæter, Comparison of oil recovery for six nanofluids in Berea sandstone cores, in:International symposium of the society of core analysts, 2014, pp. 1-12. [119] A. El Shafey, Effect of nanoparticles and polymer nanoparticles implementation on chemical flooding, wettability and interfacial tension for the enhanced oil recovery processes, African J. Eng. Res 5(2017) 35-53. [120] N. Kothari, B. Raina, K.B. Chandak, V. Iyer, H.P. Mahajan, Application of ferrofluids for enhanced surfactant flooding in IOR, SPE EUROPEC/EAGE Annual Conference and Exhibition, Society of Petroleum Engineers, 2010. [121] M. Moslan, W.R.W. Sulaiman, A. Ismail, M. Jaafar, Applications of aluminium oxide and zirconium oxide nanoparticles in altering dolomite rock wettability using different dispersing medium, Chem. Eng. Trans. 56(2017) 1339-1344. [122] A. Roustaei, J. Moghadasi, H. Bagherzadeh, A. Shahrabadi, An Experimental Investigation of Polysilicon nanoparticles' Recovery Efficiencies through Changes in Interfacial Tension and Wettability Alteration, in:SPE International Oilfield Nanotechnology Conference and Exhibition, Society of Petroleum Engineers 2012. [123] E. Joonaki, S. Ghanaatian, The application of nanofluids for enhanced oil recovery:effects on interfacial tension and coreflooding process, Pet. Sci. Technol. 32(2014) 2599-2607. [124] A. Roustaei, S. Saffarzadeh, M. Mohammadi, An evaluation of modified silica nanoparticles' efficiency in enhancing oil recovery of light and intermediate oil reservoirs, Egypt. J. Pet. 22(2013) 427-433. [125] F. Lafuma, K. Wong, B. Cabane, Bridging of colloidal particles through adsorbed polymers, J. Colloid Interface Sci. 143(1991) 9-21. [126] M. Mohajeri, M. Hemmati, A.S. Shekarabi, An experimental study on using a nanosurfactant in an EOR process of heavy oil in a fractured micromodel, J. Pet. Sci. Eng. 126(2015) 162-173. [127] K. Rahimi, M. Adibifard, Experimental study of the nanoparticles effect on surfactant absorption and oil recovery in one of the Iranian oil reservoirs, Pet. Sci. Technol. 33(2015) 79-85. [128] R. Liu, W. Pu, J.J. Sheng, D. Du, Star-like hydrophobically associative polyacrylamide for enhanced oil recovery:comprehensive properties in harsh reservoir conditions, J. Taiwan. Inst. Chem. E 80(2017) 639-649. [129] W.-F. Pu, R. Liu, K.-Y. Wang, K.-X. Li, Z.-P. Yan, B. Li, L. Zhao, Water-soluble core-shell hyperbranched polymers for enhanced oil recovery, Ind. Eng. Chem. 54(2015) 798-807. [130] R. Ponnapati, O. Karazincir, E. Dao, R. Ng, K. Mohanty, R. Krishnamoorti, Polymerfunctionalized nanoparticles for improving waterflood sweep efficiency:characterization and transport properties, Ind. Eng. Chem. 50(2011) 13030-13036. [131] S.S. Khalilinezhad, G. Cheraghian, Characterizing the role of clay and silica nanoparticles in enhanced heavy oil recovery during polymer flooding, Arab. J. Sci. Eng. 41(2016) 2731-2750. [132] A. Rezaei, M. Abdi-Khangah, A. Mohebbi, A. Tatar, A.H. Mohammadi, Using surface modified clay nanoparticles to improve rheological behavior of Hydrolized Polyacrylamid (HPAM) solution for enhanced oil recovery with polymer flooding, J. Mol. Liq. 222(2016) 1148-1156. [133] G. Cheraghian, Application of nano-fumed silica in heavy oil recovery, Petrol. Sci. Technol 34(2016) 12-18. [134] J. Cao, T. Song, X. Wang, Y. Zhu, S. Wang, M. Zhao, Y. Miao, J. Zhang, Studies on the rheological properties of amphiphilic nanosilica and a partially hydrolyzed polyacrylamide hybrid for enhanced oil recovery, Chem. Eng. Sci. 206(2019) 146-155. [135] A. Bera, H. Belhaj, Application of nanotechnology by means of nanoparticles and nanodispersions in oil recovery-a comprehensive review, J. Nat. Gas. Sci. Eng 34(2016) 1284-1309. [136] S.S. Khalilinezhad, G. Cheraghian, E. Roayaei, H. Tabatabaee, M.S. Karambeigi, Improving heavy oil recovery in the polymer flooding process by utilizing hydrophilic silica nanoparticles, Energ. Source. Part. A (2017) 1-10. [137] F.S.-M.d.A. Soares, M. Prodanovic, C. Huh, Excitable nanoparticles for trapped oil mobilization, SPE Improved Oil Recovery Symposium, Society of Petroleum Engineers, Tulsa, Oklahoma, USA 2014, p. 16. [138] E. Abdelfatah, M. Pournik, B.J.B. Shiau, J. Harwell, Mathematical modeling and simulation of nanoparticles transport in heterogeneous porous media, J. Nat. Gas. Sci. Eng 40(2017) 1-16. [139] A.O. Gbadamosi, R. Junin, M.A. Manan, A. Agi, J.O. Oseh, J. Usman, Synergistic application of aluminium oxide nanoparticles and oilfield polyacrylamide for enhanced oil recovery, J. Pet. Sci. Eng. 182(2019) 106345. [140] W. Kuang, S. Saraji, M. Piri, A systematic experimental investigation on the synergistic effects of aqueous nanofluids on interfacial properties and their implications for enhanced oil recovery, Fuel 220(2018) 849-870. [141] H. Radnia, A. Rashidi, A.R.S. Nazar, M.M. Eskandari, M. Jalilian, A novel nanofluid based on sulfonated graphene for enhanced oil recovery, J. Mol. Liq. 271(2018) 795-806. [142] B. Moradi, P. Pourafshary, F.J. Farahani, M. Mohammadi, M. Emadi, Application of SiO2 Nano Particles to Improve the Performance of Water Alternating Gas EOR Process, in:SPE oil & gas India Conference and Exhibition, Society of Petroleum Engineers, 2015. [143] D. Luo, F. Wang, J. Zhu, L. Tang, Z. Zhu, J. Bao, R.C. Willson, Z. Yang, Z. Ren, Secondary oil recovery using Graphene-based Amphiphilic Janus Nanosheet fluid at an ultralow concentration, Ind. Eng. Chem. 56(2017) 11125-11132. [144] M. AfzaliTabar, M. Alaei, M. Bazmi, R. Ranjineh Khojasteh, M. Koolivand-Salooki, F. Motiee, A.M. Rashidi, Facile and economical preparation method of nanoporous graphene/silica nanohybrid and evaluation of its Pickering emulsion properties for chemical enhanced oil recovery (C-EOR), Fuel 206(2017) 453-466. [145] M.I. Youssif, R.M. El-Maghraby, S.M. Saleh, A. Elgibaly, Silica nanofluid flooding for enhanced oil recovery in sandstone rocks, Egypt. J. Petrol 27(2018) 105-110. [146] E.A. Taborda, C.A. Franco, S.H. Lopera, V. Alvarado, F.B. Cortés, Effect of nanoparticles/nanofluids on the rheology of heavy crude oil and its mobility on porous media at reservoir conditions, Fuel 184(2016) 222-232. |
[1] | Chuanshuai Dong, Lin Lu, Tao Wen, Shaojie Zhang. Thermal performance assessment of self-rotating twisted tapes and Al2O3 nanoparticle in a circular pipe [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 77-86. |
[2] | Yanyong Li, Meng Ge, Jiameng Wang, Mengquan Guo, Fanji Liu, Mingxun Han, Yanhong Xu, Lihong Zhang. Dehydrogenation of isobutane to isobutene over a Pt-Cu bimetallic catalyst in the presence of LaAlO3 perovskite [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 203-211. |
[3] | Xueping Liu, Ping Xue, Feng Jia, Dongya Qiu, Keren Shi, Weiwei Zhang. Tailoring polymeric composite gel beads-encapsulated microorganism for efficient degradation of phenolic compounds [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 301-306. |
[4] | Tadele Daniel Mekuria, Lei Wang, Chunhong Zhang, Ming Yang, Qingtao Lv, Diaa Eldin Fouad. Synthesis and characterization of high strength polyimide/silicon nitride nanocomposites with enhanced thermal and hydrophobic properties [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 446-453. |
[5] | M. Ijaz Khan, Seifedine Kadry, Yuming Chu, M. Waqas. Modeling and numerical analysis of nanoliquid (titanium oxide, graphene oxide) flow viscous fluid with second order velocity slip and entropy generation [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 17-25. |
[6] | Kai Ge, Yuanhui Ji, Xiaohua Lu. A novel interfacial thermodynamic model for predicting solubility of nanoparticles coated by stabilizers [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 103-112. |
[7] | Kok Bing Tan, Daohua Sun, Jiale Huang, Tareque Odoom-Wubah, Qingbiao Li. State of arts on the bio-synthesis of noble metal nanoparticles and their biological application [J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 272-290. |
[8] | Jing Zhao, Zhiguang Duan, Xiaoxuan Ma, Yannan Liu, Daidi Fan. Recent advances in systemic and local delivery of ginsenosides using nanoparticles and nanofibers [J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 291-300. |
[9] | Racheal Aigbe, Doga Kavaz. Unravel the potential of zinc oxide nanoparticle-carbonized sawdust matrix for removal of lead (II) ions from aqueous solution [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 92-102. |
[10] | Xinyan Chen, Bin He, Mi Feng, Dingwei Zhao, Jian Sun. Immobilized laccase on magnetic nanoparticles for enhanced lignin model compounds degradation [J]. Chinese Journal of Chemical Engineering, 2020, 28(8): 2152-2159. |
[11] | Elaine C. Paris, João O. D. Malafatti, Henrique C. Musetti, Alexandra Manzoli, Alessandra Zenatti, Márcia T. Escote. Faujasite zeolite decorated with cobalt ferrite nanoparticles for improving removal and reuse in Pb2+ ions adsorption [J]. Chinese Journal of Chemical Engineering, 2020, 28(7): 1884-1890. |
[12] | Sedigheh Sadegh Hassani, Maryam Daraee, Zahra Sobat. Advanced development in upstream of petroleum industry using nanotechnology [J]. Chinese Journal of Chemical Engineering, 2020, 28(6): 1483-1491. |
[13] | Yi Xiong, Liping Huang, Sakil Mahmud, Feng Yang, Huihong Liu. Bio-synthesized palladium nanoparticles using alginate for catalytic degradation of azo-dyes [J]. Chinese Journal of Chemical Engineering, 2020, 28(5): 1334-1343. |
[14] | Zheng Zhang, Yuanhui Ji, Wei Chen. Hollow MnO2/GNPs serving as a multiresponsive nanocarrier for controlled drug release [J]. Chinese Journal of Chemical Engineering, 2020, 28(5): 1405-1414. |
[15] | Wei Tao, Aili Wang, Hengbo Yin. Interaction between Pd and Cu nanoparticles in bimetallic CuPdx nanoparticles and its impact on oxidation of 1,2-propanediol to aliphatic acids [J]. Chinese Journal of Chemical Engineering, 2020, 28(4): 1085-1094. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||