Chinese Journal of Chemical Engineering ›› 2021, Vol. 29 ›› Issue (1): 146-153.doi: 10.1016/j.cjche.2020.08.011
• Separation Science and Engineering • Previous Articles Next Articles
Saeideh Dermanaki Farahani, Javad Zolgharnein
Received:
2020-02-25
Revised:
2020-07-24
Online:
2021-01-28
Published:
2021-04-02
Contact:
Javad Zolgharnein
E-mail:j-zolgharnein@araku.ac.ir
Supported by:
Saeideh Dermanaki Farahani, Javad Zolgharnein. Multivariate optimization of high removal of lead(II) using an efficient synthesized Ni-based metal-organic framework adsorbent[J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 146-153.
[1] M.R. Awual, Innovative composite material for efficient and highly selective Pb(Ⅱ) ion capturing from wastewater, J. Mol. Liq. 284(2019) 502-510. [2] M.R. Karim, M.O. Aijaz, N.H. Alharth, H.F. Alharbi, F.S. Al-Mubaddel, M.R. Awual, Composite nanofibers membranes of poly(vinyl alcohol)/chitosan for selective lead(Ⅱ) and cadmium(Ⅱ) ions removal from wastewater, Ecotoxicol. Environ. Saf. 169(2019) 479-486. [3] J.E. Efome, D. Rana, T. Matsuura, C.Q. Lan, Effects of operating parameters and coexisting ions on the efficiency of heavy metal ions removal by nano-fibrous metal-organic framework membrane filtration process, Sci. Total Environ. 674(2019) 355-362. [4] I. Ali, Microwave assisted economic synthesis of multi walled carbon nanotubes for arsenic species removal in water:batch and column operations, J. Mol. Liq. 217(2018) 677-685. [5] M. Ahmaruzzaman, V.K. Gupta, Rice husk and its ash as low-cost adsorbents in water and wastewater treatment, Ind. Eng. Chem. Res. 50(2011) 13589-13613. [6] V.K. Gupta, I. Ali, T.A. Saleh, M.N. Siddiqui, S. Agarwal, Chromium removal from water by activated carbon developed from waste rubber tires, Environ. Sci. Pollut. Res. 20(2013) 1261-1268. [7] J.E. Efome, D. Rana, T. Matsuura, C.Q. Lan, Metal-organic frameworks supported on nanofibers to remove heavy metals, J. Mater. Chem. A 6(2018) 4550-4555. [8] S. Haider, S.Y. Park, Preparation of the electrospun chitosan nanofibers and their applications to the adsorption of Cu(Ⅱ) and Pb(Ⅱ) ions from an aqueous solution, J. Membr. Sci. 328(2009) 90-96. [9] K.B. Rufato, V.C. Almeida, M.J. Kipper, A.F. Rubira, A.F. Martins, E.C. Muniz, Polysaccharide-based adsorbents prepared in ionic liquid with high performance for removing Pb(Ⅱ) from aqueous systems, Carbohydr. Polym. 215(2019) 272-279. [10] D. Pathania, A. Sharma, Z.M. Siddiqi, Removal of Congo red dye from aqueous system using Phoenix dactylifera seeds, J. Mol. Liq. 219(2016) 359-367. [11] G. Akkaya Sayili, Synthesis, characterization and adsorption properties of a novel biomagnetic composite for the removal of Congo red from aqueous medium, J. Mol. Liq. 211(2015) 515-526. [12] J.E. Efome, D. Rana, T. Matsuura, C.Q. Lan, Experiment and modeling for flux and permeate concentration of heavy metal ion in adsorptive membrane filtration using a metal-organic framework incorporated nanofibrous membrane, Chem. Eng. J. 352(2018) 737-744. [13] V.K. Gupta, T.A. Saleh, Sorption of pollutants by porous carbon, carbon nanotubes and fullerene-an overview, Environ. Sci. Pollut. Res. 20(2013) 2828-2843. [14] Y. Chen, Y. Long, Q. Li, X. Chen, X. Xu, Synthesis of high-performance sodium carboxymethyl cellulose-based adsorbent for effective removal of methylene blue and Pb (Ⅱ), Int. J. Biol. Macromol. 126(2019) 107-117. [15] G. Li, J. Ye, Q. Fang, F. Liu, Amide-based covalent organic frameworks materials for efficient and recyclable removal of heavy metal lead (Ⅱ), Chem. Eng. J. (2019) 822-830. [16] M.R. Awual, An efficient composite material for selective lead(Ⅱ) monitoring and removal from wastewater, J. Environ. Chem. Eng. 7(2019) 103087. [17] M.R. Awual, A. Islam, M.M. Hasan, M.M. Rahman, A.M. Asiri, M.A. Khaleque, M. Chanmiya Sheikh, Introducing an alternate conjugated material for enhanced lead (Ⅱ) capturing from wastewater, J. Clean. Prod. 224(2019) 920-929. [18] L. Fu, S. Wang, G. Lin, L. Zhang, Q. Liu, H. Zhou, C. Kang, S. Wan, H. Li, S. Wen, Postmodification of UiO-66-NH2 by resorcyl aldehyde for selective removal of Pb(Ⅱ) in aqueous media, J. Clean. Prod. 229(2019) 470-479. [19] L. Wang, J. Li, Q. Jiang, L. Zhao, Water-soluble Fe3O4 nanoparticles with high solubility for removal of heavy-metal ions from waste water, Dalton Trans. 41(2012) 4544-4551. [20] D. Lv, Y. Liu, J. Zhou, K. Yang, Z. Lou, S.A. Baig, X. Xu, Application of EDTA-functionalized bamboo activated carbon (BAC) for Pb(Ⅱ) and Cu(Ⅱ) removal from aqueous solutions, Appl. Surf. Sci. 428(2017) 648-658. [21] A. Baruah, S. Mondal, L. Sahoo, U.K. Gautam, Ni-Fe-layered double hydroxide/Ndoped graphene oxide nanocomposite for the highly efficient removal of Pb(Ⅱ) and Cd(Ⅱ) ions from water, J. Solid State Chem. 280(2019) 120963. [22] Z. Hasan, S.H. Jhung, Removal of hazardous organics from water using metal-organic frameworks (MOFs):plausible mechanisms for selective adsorptions, J. Hazard. Mater. 283(2015) 329-339. [23] S. Khanjani, A. Morsali, Ultrasound-promoted coating of MOF-5 on silk fiber and study of adsorptive removal and recovery of hazardous anionic dye "Congo red,", Ultrason. Sonochem. 21(2014) 1424-1429. [24] C. Janiak, J.K. Vieth, MOFs, MILs and more:concepts, properties and applications for porous coordination networks (PCNs), New J. Chem. 34(2010) 2366-2388. [25] N.A. Khan, Z. Hasan, S.H. Jhung, Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs):a review, J. Hazard. Mater. 244-245(2013) 444-456. [26] J.E. Efome, D. Rana, T. Matsuura, C.Q. Lan, Insight studies on metal-organic framework nanofibrous membrane adsorption and activation for heavy metal ions removal from aqueous solution, ACS Appl. Mater. Interfaces 10(2018) 18619-18629. [27] M.Y. Masoomi, A. Morsali, P.C. Junk, Rapid mechanochemical synthesis of two new Cd(Ⅱ)-based metal-organic frameworks with high removal efficiency of Congo red, CrystEngComm. 17(2015) 686-692. [28] W.J. Son, J. Kim, J. Kim, W.S. Ahn, Sonochemical synthesis of MOF-5, Chem. Commun. (2008) 6336-6338. [29] L.G. Qiu, Z.Q. Li, Y. Wu, W. Wang, T. Xu, X. Jiang, Facile synthesis of nanocrystals of a microporous metal-organic framework by an ultrasonic method and selective sensing of organoamines, Chem. Commun. (2008) 3642-3644. [30] C. Vaitsis, G. Sourkouni, C. Argirusis, Metal-organic frameworks (MOFs) and ultrasound:A review, Ultrason. Sonochem. 52(2019) 106-119. [31] N. Chang, C.-X. Yang, X.-P. Yan, Application metal-organic frameworks:to analytical chemistry, Encycl. Inorg. Bioinorg. Chem. (2014) 1-14. [32] J. Zolgharnein, S. Dermanaki Farahani, M. Bagtash, S. Amani, Application of a new metal-organic framework of[Ni2F2(4,4'-bipy)2(H2O)2](VO3)2.8H2O as an efficient adsorbent for removal of Congo red dye using experimental design optimization, Environ. Res. 182(2020) 109054. [33] J. Zolgharnein, N. Asanjarani, S.N. Mousavi, Optimization and characterization of Tl (I) adsorption onto modified Ulmus carpinifolia tree leaves, clean-soil, air, Water. 39(2010) 250-258. [34] R. Leardi, Experimental design in chemistry:a tutorial, Anal. Chim. Acta 652(2009) 161-172. [35] J. Zolgharnein, A. Shahmoradi, J.B. Ghasemi, Comparative study of Box-Behnken, central composite, and Doehlert matrix for multivariate optimization of Pb (Ⅱ) adsorption onto Robinia tree leaves, J. Chemom. 27(2013) 12-20. [36] S.L.C. Ferreira, R.E. Bruns, H.S. Ferreira, G.D. Matos, J.M. David, G.C. Brandão, E.G.P. da Silva, L.A. Portugal, P.S. dos Reis, A.S. Souza, W.N.L. dos Santos, Box-Behnken design:an alternative for the optimization of analytical methods, Anal. Chim. Acta 597(2007) 179-186. [37] K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J. 156(2010) 2-10. [38] V. Vimonses, S. Lei, B. Jin, C.W.K. Chow, C. Saint, Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials, Chem. Eng. J. 148(2009) 354-364. [39] J. Zolgharnein, A. Shahmoradi, P. Zolgharnein, S. Amani, Multivariate optimization and adsorption characterization of As(Ⅲ) removal by using fraxinus tree leaves, Chem. Eng. Commun. 203(2016) 210-223. [40] J. Zolgharnein, A. Shahmoradi, Adsorption of Cr(VI) onto Elaeagnus tree leaves:statistical optimization, equilibrium modeling, and kinetic studies, J. Chem. Eng. Data 55(2010) 3428-3437. [41] M. Ghaedi, S. Hajjati, Z. Mahmudi, I. Tyagi, S. Agarwal, A. Maity, V.K. Gupta, Modeling of competitive ultrasonic assisted removal of the dyes-methylene blue and Safranin-O using Fe3O4 nanoparticles, Chem. Eng. J. 268(2015) 28-37, https://doi.org/10.1016/j.cej.2014.12.090. [42] D.L. Pavia, G.M. Lampman, G.S. Kriz, J.R. Vyvyan, Introduction to Spectroscopy, Fourth, Brooks/Cole, Cengage Learning, USA, 2009. [43] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds-Part a:Theory and Applications in Inorganic Chemistry, Sixth, New Jersey, 2009. [44] R. Fernández De Luis, M.K. Urtiaga, J.L. Mesa, A.T. Aguayo, T. Rojo, M.I. Arriortua, Four nodal self-catenated[{Ni8(Bpy)16}V24O68].8.5(H2O), combining three dimensional metal-organic and inorganic frameworks, CrystEngComm 12(2010) 1880-1886. [45] L. Yang, T. Wen, L. Wang, T. Miki, H. Bai, X. Lu, H. Yu, T. Nagasaka, The stability of the compounds formed in the process of removal Pb(Ⅱ), Cu(Ⅱ) and Cd(Ⅱ) by steelmaking slag in an acidic aqueous solution, J. Environ. Manag. 231(2019) 41-48. [46] H. Zhang, Y. Li, X. Wu, Y. Zhang, D. Zhang, Application of response surface methodology to the treatment landfill leachate in a three-dimensional electrochemical reactor, Waste Manag. 30(2010) 2096-2102. [47] S. Liu, Y. Ding, P. Li, K. Diao, X. Tan, F. Lei, Y. Zhan, Q. Li, B. Huang, Z. Huang, Adsorption of the anionic dye Congo red from aqueous solution onto natural zeolites modified with N,N-dimethyl dehydroabietylamine oxide, Chem. Eng. J. 248(2014) 135-144. [48] M. Roosta, M. Ghaedi, A. Daneshfar, R. Sahraei, A. Asghari, Optimization of the ultrasonic assisted removal of methylene blue by gold nanoparticles loaded on activated carbon using experimental design methodology, Ultrason. Sonochem. 21(2014) 242-252. [49] F. Nekouei, S. Nekouei, I. Tyagi, V.K. Gupta, Kinetic, thermodynamic and isotherm studies for acid blue 129 removal from liquids using copper oxide nanoparticlemodified activated carbon as a novel adsorbent, J. Mol. Liq. 201(2015) 124-133. [50] M.A.M. Salleh, D.K. Mahmoud, W.A.W.A. Karim, A. Idris, Cationic and anionic dye adsorption by agricultural solid wastes:a comprehensive review, Desalination 280(2011) 1-13. [51] H. Qiu, L. Lv, B. Pan, Q. Zhang, W. Zhang, Q. Zhang, Critical review in adsorption kinetic models, J. Zhejiang Univ. A. 10(2009) 716-724. [52] J. Shu, Z. Wang, Y. Huang, N. Huang, C. Ren, W. Zhang, Adsorption removal of Congo red from aqueous solution by polyhedral Cu2O nanoparticles:kinetics, isotherms, thermodynamics and mechanism analysis, J. Alloys Compd. 633(2015) 338-346. [53] A.B. Albadarin, C. Mangwandi, A.H. Al-Muhtaseb, G.M. Walker, S.J. Allen, M.N.M. Ahmad, Kinetic and thermodynamics of chromium ions adsorption onto low-cost dolomite adsorbent, Chem. Eng. J. 179(2012) 193-202. [54] S.J. Allen, Q. Gan, R. Matthews, P.A. Johnson, Comparison of optimised isotherm models for basic dye adsorption by kudzu, Bioresour. Technol. 88(2003) 143-152. [55] S.G. Wang, W.X. Gong, X.W. Liu, Y.W. Yao, B.Y. Gao, Q.Y. Yue, Removal of lead(Ⅱ) from aqueous solution by adsorption onto manganese oxide-coated carbon nanotubes, Sep. Purif. Technol. 58(2007) 17-23. [56] J. Goel, K. Kadirvelu, C. Rajagopal, V.K. Garg, Removal of lead(Ⅱ) by adsorption using treated granular activated carbon:batch and column studies, J. Hazard. Mater. 125(2005) 211-220. [57] M. Sekar, V. Sakthi, S. Rengaraj, Kinetics and equilibrium adsorption study of lead(Ⅱ) onto activated carbon prepared from coconut shell, J. Colloid Interface Sci. 279(2004) 307-313. [58] Q. Wang, C. Zheng, Z. Shen, Q. Lu, C. He, T.C. Zhang, J. Liu, Polyethyleneimine and carbon disulfide co-modified alkaline lignin for removal of Pb2+ ions from water, Chem. Eng. J. (2019) 265-274. [59] H. Demey, T. Melkior, A. Chatroux, K. Attar, S. Thiery, H. Miller, M. Grateau, A.M. Sastre, M. Marchand, Evaluation of torrefied poplar-biomass as a low-cost sorbent for lead and terbium removal from aqueous solutions and energy co-generation, Chem. Eng. J. 361(2019) 839-852. [60] S. Bao, K. Li, P. Ning, J. Peng, X. Jin, L. Tang, Highly effective removal of mercury and lead ions from wastewater by mercaptoamine-functionalised silica-coated magnetic nano-adsorbents:behaviours and mechanisms, Appl. Surf. Sci. 393(2016) 457-466. [61] S. Kamari, F. Ghorbani, A. Mohammad, Adsorptive removal of lead from aqueous solutions by amine-functionalized magMCM-41 as a low-cost nanocomposite prepared from rice husk:modeling and optimization by response surface methodology, Sustain. Chem. Pharm. 13(2019) 100153. [62] R. Gao, L. Xiang, H. Hu, Q. Fu, J. Zhu, Y. Liu, G. Huang, High-efficiency removal capacities and quantitative sorption mechanisms of Pb by oxidized rape straw biochars, Sci. Total Environ. 699(2019) 134262. [63] A.E. Burakov, E.V. Galunin, I.V. Burakova, A.E. Kucherova, S. Agarwal, A.G. Tkachev, V. K. Gupta, Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes:a review, Ecotoxicol. Environ. Saf. 148(2018) 702-712. [64] V.K. Gupta, A. Nayak, S. Agarwal, Bioadsorbents for remediation of heavy metals:current status and their future prospects, Environ. Eng. Res. 20(2015) 001-018. [65] R. Aigbe, D. Kavaz, Unravel the potential of zinc oxide nanoparticle-carbonized sawdust matrix for removal of lead (Ⅱ) ions from aqueous solution, Chin. J. Chem. Eng. (2020) https://doi.org/10.1016/j.cjche.2020.05.007. [66] F. Ke, J. Jiang, Y. Li, J. Liang, X. Wan, S. Ko, Highly selective removal of Hg2+ and Pb2+ by thiol-functionalized Fe3O4@metal-organic framework core-shell magnetic microspheres, Appl.Surf.Sci. 15(2017) 266-274. |
[1] | Ling Meng, Xia Gui, Zhi Yun. Static and dynamic studies of adsorption by four macroporous resins to enrich oridonin from Rabdosia rubescens [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 151-158. |
[2] | Zoya Zaheer, Ekram Yousif Danish, Samia A. Kosa. 2-Hydroxy-1, 4-napthoquinone solubilization, thermodynamics and adsorption kinetics with surfactant [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 212-223. |
[3] | Ali H. Jawad, Ahmed Saud Abdulhameed, Lee D. Wilson, Syed Shatir A. Syed-Hassan, Zeid A. ALOthman, Mohammad Rizwan Khan. High surface area and mesoporous activated carbon from KOH-activated dragon fruit peels for methylene blue dye adsorption: Optimization and mechanism study [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 281-290. |
[4] | Mohammad Saood Manzar, Shamsuddeen A. Haladu, Mukarram Zubair, Nuhu Dalhat Mu'azu, Aleem Qureshi, Nawaf I. Blaisi, Thomas F. Garrison, Othman Charles S. Al Hamouz. Synthesis and characterization of a series of cross-linked polyamines for removal of Erichrome Black T from aqueous solution [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 341-352. |
[5] | Trung Thanh Nguyen, Vu Anh Khoa Tran, Le Ba Tran, Phuoc Toan Phan, Minh Tan Nguyen, Long Giang Bach, Surapol Padungthon, Cong Khiem Ta, Nhat Huy Nguyen. Synthesis of cation exchange resin-supported iron and magnesium oxides/hydroxides composite for nitrate removal in water [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 378-384. |
[6] | Abdul Samad, Muhammad Imran Din, Mahmood Ahmed, Saghir Ahmad. Synthesis of zinc oxide nanoparticles reinforced clay and their applications for removal of Pb (II) ions from aqueous media [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 454-461. |
[7] | Xu Tang, Hongguang Zhang, Zhenjiang Guo, Xianren Zhang, Jing Li, Dapeng Cao. Multiplicity of thermodynamic states of van der Waals gas in nanobubbles [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 26-32. |
[8] | Jianglong Du, Haolan Tao, Jie Yang, Cheng Lian, Sen Lin, Honglai Liu. Understanding electrokinetic thermodynamics in nanochannels [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 33-41. |
[9] | Shanshan Wang, Liangliang Huang, Yumeng Zhang, Licheng Li, Xiaohua Lu. A mini-review on the modeling of volatile organic compound adsorption in activated carbons: Equilibrium, dynamics, and heat effects [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 153-163. |
[10] | Xinxiao Sun, Xianglai Li, Xiaolin Shen, Jia Wang, Qipeng Yuan. Recent advances in microbial production of phenolic compounds [J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 54-61. |
[11] | Jianye Xia, Guan Wang, Meng Fan, Min Chen, Zeyu Wang, Yingping Zhuang. Understanding the scale-up of fermentation processes from the viewpoint of the flow field in bioreactors and the physiological response of strains [J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 178-184. |
[12] | Xiujuan Li, Le Chen, Dandan Zhu, Song Yang, Zhong Wu, Mingyang He, Zhihui Zhang, Qun Chen. Preparation of hybridizing zeolitic imidazolate frameworks with carboxymethylcellulose for adsorption separation of n-hexane/3-methylpentane [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 103-109. |
[13] | Shujuan Xiao, Xiaowen Huo, Shuxin Fan, Kui Zhao, Shouwu Yu, Xiaoyao Tan. Design and synthesis of Al-MOF/PPSU mixed matrix membrane with pollution resistance [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 110-120. |
[14] | Xianxiu Li, Yan Sun, Xiaoyan Dong. Implications from γ-globulin adsorption onto cation exchangers fabricated by sequential alginate grafting and sulfonation [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 121-125. |
[15] | Aleksandra Perović, Mihajlo Z. Stanković, Vlada B. Veljković, Milan D. Kostić, Olivera S. Stamenković. A further study of the kinetics and optimization of the essential oil hydrodistillation from lavender flowers [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 126-130. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||