Chinese Journal of Chemical Engineering ›› 2021, Vol. 32 ›› Issue (4): 159-167.doi: 10.1016/j.cjche.2020.09.021
• Catalysis, Kinetics and Reaction Engineering • Previous Articles Next Articles
Jiahao Cui1, Shejiang Liu1, Hua Xue2, Xianqin Wang1, Ziquan Hao1, Rui Liu2, Wei Shang1, Dan Zhao1, Hui Ding1,3
Received:
2019-11-19
Revised:
2020-08-09
Online:
2021-04-28
Published:
2021-06-19
Contact:
Hui Ding
E-mail:dinghui@tju.edu.cn
Supported by:
Jiahao Cui, Shejiang Liu, Hua Xue, Xianqin Wang, Ziquan Hao, Rui Liu, Wei Shang, Dan Zhao, Hui Ding. Catalytic ozonation of volatile organic compounds (ethyl acetate) at normal temperature[J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 159-167.
[1] S.K. Brown, M.K. Sim, M.J. Abramson, Concentrations of volatile organic compounds in indoor air-A review, Indoor Air 4(1994) 123-134. [2] F.M. Cao, P. Qin, S.Y. Lu, Q. He, F.C. Wu, H.W. Sun, L. Wang, L.L. Li, Measurement of volatile organic compounds and associated risk assessments through ingestion and dermal routes in Dongjiang Lake, China, Ecotoxicol. Environ. Saf. 165(2018) 645-653. [3] L. Zhong, J. Brancho, S. Batterman, Experimental and modeling study of visible light responsive photocatalytic oxidation (PCO) materials for toluene degradation, Appl. Catal. B-Environ. 216(2017) 122-132. [4] X.J. Zhou, Y.F. Liu, G. Song, X.K. Wang, F.H. Wang, J.P. Liu, Modelling and testing of VOC source suppression effect of building materials modified with adsorbents, Build. Environ. 154(2019) 122-131. [5] Y.Q. Qi, L.M. Shen, J.L. Zhang, J. Yao, R. Lu, T. Miyakoshi, Species and release characteristics of VOCs in furniture coating process, Environ. Pollut. 245(2019) 810-819. [6] Z.M. Zhong, Q. Sha, J.Y. Zheng, Z.B. Yuan, Z.J. Gao, J.M. Ou, Z.Y. Zheng, C. Li, Z.J. Huang, Sector-based VOCs emission factors and source profiles for the surface coating industry in the Pearl River Delta region of China, Sci. Total Environ. 583(2017) 19-28. [7] G.H. Li, W. Wei, X. Shao, L. Nie, H.L. Wang, X. Yan, R. Zhang, A comprehensive classification method for VOC emission sources to tackle air pollution based on VOC species reactivity and emission amounts, J. Environ. Sci. 67(2018) 78-88. [8] H.L. Wang, L. Nie, J. Li, Y.F. Wang, G. Wang, J.H. Wang, Z.P. Hao, Emission characteristics and evaluation analysis of volatile organic compounds in key industries, Sci. China Press 57(19) (2012) 1739-1746. [9] H.L. Wang, J.H. Wang, C.L. Zhu, L. Nie, Z.P. Hao, Evaluation and selection of VOCs treatment technologies in packaging and printing industry, Environ. Sci. 1(7) (2014) 2503-2507. [10] Y.R. Yang, X.G. Liu, Y. Qu, J.L. An, R. Jiang, Y.H. Zhang, Y.L. Sun, Z.J. Wu, F. Zhang, W.Q. Xu, Q.X. Ma, Characteristics and formation mechanism of continuous hazes in China:A case study during the autumn of 2014 in the North China plain, Atmos. Chem. Phys. 14(2015) 8165-8178. [11] M.D. Song, X.G. Liu, Y.H. Zhang, M. Shao, K.D. Lu, Q.W. Tan, M. Feng, Y. Qu, Sources and abatement mechanisms of VOCs in southern China, Atmos. Environ. 201(2019) 28-40. [12] L.R. Hui, X.G. Liu, Q.W. Tan, M. Feng, J.L. An, Y. Qu, Y.H. Zhang, N.L. Cheng, VOC characteristics, sources and contributions to SOA formation during haze events in Wuhan, Central China, Sci. Total Environ. 650(2019) 2624-2639. [13] A.T. Nair, J. Senthilnathan, S.M. Nagendra, Emerging perspectives on VOC emissions from landfill sites:Impact on tropospheric chemistry and local air quality, Process Saf. Environ. Prot. 121(2019) 143-154. [14] R.J. Huang, Y.L. Zhang, C. Bozzetti, K.F. Ho, J.J. Gao, Y.M. Han, K.R. Daellenbach, High secondary aerosol contribution to particulate pollution during haze events in China, Nature 514(7521) (2014) 218-222. [15] J. Rudnicka, T. Kowalkowski, B. Buszewski, Searching for selected VOCs in human breath samples as potential markers of lung cancer, Lung Cancer 135(2019) 123-129. [16] D.M. Han, S. Gao, Q.Y. Fu, J.P. Cheng, X.J. Chen, H. Xu, S. Liang, Y. Zhou, Y.N. Ma, Do volatile organic compounds (VOCs) emitted from petrochemical industries affect regional PM2.5?, Atmos. Res. 209(2018) 123-130. [17] S.K. Song, Z.H. Shon, Y.H. Kang, K.H. Kim, S.B. Han, M.S. Kang, J.H. Bang, I. Oh, Source apportionment of VOCs and their impact on air quality and health in the megacity of Seoul, Environ. Pollut. 247(2019) 763-774. [18] S.Q. Zhu, X.R. Zheng, S. Stevanovic, L. Wang, Investigating particles, VOCs, ROS produced from mosquito-repellent incense emissions and implications in SOA formation and human health, Build. Environ. 143(2018) 645-651. [19] M. Kampa, E. Castanas, Human health effects of air pollution, Environ. Pollut. 151(2) (2008) 362-367. [20] Z.P. Hao, D.Y. Cheng, Y. He, Ozone-catalytic technology to treat lowconcentration gaseous pollutants, Environ. Pollut. Prevent. 23(1) (2001) 24-26. [21] B. Wu, X. Liu, Research progress of control techniques for volatile organic compounds pollution, Power Environ. Protect. 12(4) (2005) 39-42. [22] H.Y. Li, P.P. Gao, H.G. Ni, Emission characteristics of parent and halogenated PAHs in simulated municipal solid waste incineration, Sci. Total Environ. 665(2019) 11-17. [23] M. Zang, C.C. Zhao, Y.Q. Wang, A review of recent advances in catalytic combustion of VOCs on perovskite-type catalysts, J. Saudi Chem. Soc. 23(2019) 645-654. [24] S. Chand, Review carbon fibers for composites, J. Mater. Sci. 35(6) (2000) 1303-1313. [25] Q. Huang, Study on Manufacturing Process, Surface Chemical Structure Formation Mechanism and Adsorption Properties of Viscose-Based Activated Carbon Fiber M.D. Thesis, Donghua University, Shanghai, 2003. [26] X.L. Zhang, Preparation and photocatalytic properties of TiO2/ACF photocatalytic materials M.D. Thesis, Jiangnan University, Wuxi, 2011. [27] X. Chen, Study on catalytic performance of supported manganese Bismuth catalyst for Ethyl Acetate M.D. Thesis, South China University of Technology, Guangzhou, 2011. [28] A.P. Terzky, The influence of activated carbon surface chemical composition on the adsorption of acetaminophen (paracetamol) in vitro Part II. TG, FTIR, and XPS analysis of carbons and the temperature dependence of adsorption kinetics at the neutral pH, Colloids Surf. A:Physicochem. Eng. Aspects 177(2001) 23-45. [29] J.L. Figueiredo, M.F.R. Pereira, M.M.A. Freitas, J.J.M. Orfao, Modification of the surface chemistry of activated carbons, Carbon 37(1999) 1379-1389. [30] S.H. Park, S. McClain, Z.R. Tian, S.L. Suib, C. Karwacki, Surface and bulk measurements of metals deposited on activated carbon, Chem. Mater. 9(1997) 176. [31] P. Yang, Y. Cao, W.L. Dai, J.F. Deng, K.N. Fan, Effect of chemical treatment of activated carbon as a support for promoted dimethyl carbonate synthesis by vapor phase oxidative carbonylation of methanol over Wacker-type catalysts, Appl. Catal. A 243(2003) 323-331. [32] S. Hermans, C. Diverchy, O. Demoulin, V. Dubois, E.M. Gaigneaux, M. Devillers, Nanostructured Pd/C catalysts prepared by grafting of model carboxylate complexes onto functionalized carbon, J. Catal. 243(2006) 239-251. |
[1] | Zhiheng Ren, Muhammad Naeem Younis, Hui Zhao, Chunshan Li, Xiangui Yang, Erqiang Wang, Gongying Wang. Silver modified Cu/SiO2 catalyst for the hydrogenation of methyl acetate to ethanol [J]. Chinese Journal of Chemical Engineering, 2020, 28(6): 1612-1622. |
[2] | Tao Shen, Bo Ouyang, Chao Qian, Xinzhi Chen. Aminolysis of ethyl acetate in continuous flow and its reaction kinetics [J]. Chinese Journal of Chemical Engineering, 2019, 27(12): 2948-2952. |
[3] | Hongshi Li, Tong Li, Chunli Li, Jing Fang, Lihui Dong. Reactive dividing-wall column for the co-production of ethyl acetate and n-butyl acetate [J]. Chin.J.Chem.Eng., 2019, 27(1): 136-143. |
[4] | Chaofei Fei, Dan Li, Xian Mao, Yu Guo, Wenheng Jing. Synthesis of ordered mesoporous manganese titanium composite oxide catalyst for catalytic ozonation [J]. Chin.J.Chem.Eng., 2018, 26(9): 1862-1872. |
[5] | Xian Mao, Fanglu Yuan, Anqi Zhou, Wenheng Jing. Magnéli phases TinO2n-1 as novel ozonation catalysts for effective mineralization of phenol [J]. Chin.J.Chem.Eng., 2018, 26(9): 1978-1984. |
[6] | Jiangwei Xie, Chunli Li, Fei Peng, Lihui Dong, Shuaiming Ma. Experimental and simulation of the reactive dividing wall column based on ethyl acetate synthesis [J]. Chin.J.Chem.Eng., 2018, 26(7): 1468-1476. |
[7] | Yongbing Xie, Yingying Chen, Jin Yang, Chenming Liu, He Zhao, Hongbin Cao. Distinct synergetic effects in the ozone enhanced photocatalytic degradation of phenol and oxalic acid with Fe3+/TiO2 catalyst [J]. Chin.J.Chem.Eng., 2018, 26(7): 1528-1535. |
[8] | Liping Lü, Lin Zhu, Huimin Liu, Hang Li, Shirui Sun. Comparison of continuous homogenous azeotropic and pressure-swing distillation for a minimum azeotropic system ethyl acetate/n-hexane separation [J]. Chin.J.Chem.Eng., 2018, 26(10): 2023-2033. |
[9] | Cuimei Bo, Jun Li, Lei Yang, Hui Yi, Jihai Tang, Xu Qiao. MPC of distillation column with side reactors for methyl acetate [J]. Chin.J.Chem.Eng., 2017, 25(12): 1798-1804. |
[10] | Lisha Liu, Yong Song, Zhidan Fu, Qing Ye, Shuiyuan Cheng, Tianfang Kang, Hongxing Dai. Enhanced catalytic performance of Cu-and/or Mn-loaded Fe-Sep catalysts for the oxidation of CO and ethyl acetate [J]. , 2017, 25(10): 1427-1434. |
[11] | Lisha Liu, Yong Song, Zhidan Fu, Qing Ye, Shuiyuan Cheng, Tianfang Kang, Hongxing Dai. Enhanced catalytic performance of Cu-and/or Mn-loaded Fe-Sep catalysts for the oxidation of CO and ethyl acetate [J]. , 2017, 25(10): 1427-1434. |
[12] | Zhishan Zhang, Qingjun Zhang, Guijie Li, Meiling Liu, Jun Gao. Design and control of methyl acetate-methanol separation via heat-integrated pressure-swing distillation [J]. Chin.J.Chem.Eng., 2016, 24(11): 1584-1599. |
[13] | Lumin Li, Lanyi Sun, Delian Yang, Wang Zhong, Yi Zhu, Yuanyu Tian. Reactive dividing wall column for hydrolysis of methyl acetate: Design and control [J]. , 2016, 24(10): 1360-1368. |
[14] | Hui Tian, Suying Zhao, Huidong Zheng, Zhixian Huang. Optimization of coproduction of ethyl acetate and n-butyl acetate by reactive distillation [J]. Chin.J.Chem.Eng., 2015, 23(4): 667-674. |
[15] | HUANG Xiuhui, ZHONG Weimin, PENG Changjun, QIAN Feng . Isobaric Vapor-Liquid Equilibrium of Binary Systems: p-Xylene+ (Acetic Acid, Methyl Acetate and n-Propyl Acetate) and Methyl Acetate+n-Propyl Acetate in an Acetic Acid Dehydration Process [J]. Chin.J.Chem.Eng., 2013, 21(2): 171-176. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||