Chinese Journal of Chemical Engineering ›› 2021, Vol. 29 ›› Issue (3): 94-102.doi: 10.1016/j.cjche.2020.10.033
Previous Articles Next Articles
Yinbin Wang1, Senjun Yao2, Wei Wang1, Chenglong Qiu1, Jing Zhang1, Shengwei Deng1, Hong Dong3, Chuan Wu3, Jianguo Wang1
Received:
2020-09-14
Revised:
2020-10-22
Online:
2021-03-28
Published:
2021-05-13
Contact:
Shengwei Deng, Hong Dong, Jianguo Wang
E-mail:swdeng@zjut.edu.cn;donghong1686@hotmail.com;jgw@zjut.edu.cn
Supported by:
Yinbin Wang, Senjun Yao, Wei Wang, Chenglong Qiu, Jing Zhang, Shengwei Deng, Hong Dong, Chuan Wu, Jianguo Wang. Pyrolysis of vulcanized styrene-butadiene rubber via ReaxFF molecular dynamics simulation[J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 94-102.
[1] J.D. Martínez, N. Puy, R. Murillo, T. García, M.V. Navarro, A.M. Mastral, Waste tyre pyrolysis -A review, Renew. Sustain. Energy Rev. 23 (2013) 179-213. [2] J.D. Martinez, N. Cardona-Uribe, R. Murillo, T. Garcia, J.M. Lopez, Carbon black recovery from waste tire pyrolysis by demineralization: Production and application in rubber compounding, Waste Manage. 85 (2019) 574-584. [3] A.M. Cunliffe, P.T. Williams, Composition of oils derived from the batch pyrolysis of tyres, J. Anal. Appl. Pyrolysis. 44 (1998) 131-152. [4] S.Y. Luo, Y. Feng, The production of fuel oil and combustible gas by catalytic pyrolysis of waste tire using waste heat of blast-furnace slag, Energy Convers. Manage. 136 (2017) 27-35. [5] T. Kan, V. Strezov, T. Evans, Fuel production from pyrolysis of natural and synthetic rubbers, Fuel 191 (2017) 403-410. [6] M. Arabiourrutia, G. Lopez, M. Artetxe, J. Alvarez, J. Bilbao, M. Olazar, Waste tyre valorization by catalytic pyrolysis -A review, Renew. Sustain. Energy Rev. 129 (2020) 109932-109955. [7] L. Asaro, M. Gratton, S. Seghar, N. Aït Hocine, Recycling of rubber wastes by devulcanization, Resour., Conserv. Recycl. 133 (2018) 250-262. [8] J.-R. Lanteigne, J.-P. Laviolette, J. Chaouki, Behavior of sulfur during the pyrolysis of tires, Energy Fuels 29 (2) (2015) 763-774. [9] Y.H. Pan, D.C. Yang, K. Sun, X.W. Wang, Y.G. Zhou, Q.X. Huang, Pyrolytic transformation behavior of hydrocarbons and heteroatom compounds of scrap tire volatiles, Fuel 276 (2020) 118095-118105. [10] F. Murena, Kinetics of sulphur compounds in waste tyres pyrolysis, J. Anal. Appl. Pyrol. 56 (2000) 195-205. [11] G.-G. Choi, S.-J. Oh, J.-S. Kim, Clean pyrolysis oil from a continuous two-stage pyrolysis of scrap tires using in-situ and ex-situ desulfurization, Energy 141 (2017) 2234-2241. [12] J. Yu, S. Liu, A. Cardoso, Y. Han, K. Bikane, L.S. Sun, Catalytic pyrolysis of rubbers and vulcanized rubbers using modified zeolites and mesoporous catalysts with Zn and Cu, Energy 188 (2019) 116117-116127. [13] F. Xu, B. Wang, D. Yang, X. Ming, Y. Jiang, J.H. Hao, Y.Y. Qiao, Y.Y. Tian, TG-FTIR and Py-GC/MS study on pyrolysis mechanism and products distribution of waste bicycle tire, Energy Convers. Manage. 175 (2018) 288-297. [14] A.C.T. van Duin, S. Dasgupta, F. Lorant, W.A. Goddard III, ReaxFF: A reactive force field for hydrocarbons, J. Phys. Chem. A 9396-9409 (2001). [15] K. Chenoweth, A.C.T. van Duin, W.A. Goddard III, ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation, J. Phys. Chem. A 1040-1053 (2008). [16] T.T. Qi, C.W. Bauschlicher Jr., J.W. Lawson, T.G. Desai, E.J. Reed, Comparison of ReaxFF, DFTB, and DFT for phenolic pyrolysis. 1. Molecular dynamics simulations, J. Phys. Chem. A. 117 (44) (2013) 11115-11125. [17] G.-Y. Li, F. Wang, J.-P. Wang, Y.-Y. Li, A.-Q. Li, Y.-H. Liang, ReaxFF and DFT study on the sulfur transformation mechanism during the oxidation process of lignite, Fuel 181 (2016) 238-247. [18] S. Bhoi, T. Banerjee, K. Mohanty, Insights on the combustion and pyrolysis behavior of three different ranks of coals using reactive molecular dynamics simulation, RSC. Adv. 6 (4) (2016) 2559-2570. [19] F. Castro-Marcano, A.M. Kamat, M.F. Russo, A.C.T. van Duin, J.P. Mathews, Combustion of an Illinois No. 6 coal char simulated using an atomistic char representation and the ReaxFF reactive force field, Combust. Flame 159 (3) (2012) 1272-1285. [20] C. Chen, L.L. Zhao, J.F. Wang, S.C. Lin, Reactive molecular dynamics simulations of biomass pyrolysis and combustion under various oxidative and humidity environments, Ind. Eng. Chem. Res. 56 (43) (2017) 12276-12288. [21] X. Wei, H.W. Zhong, Q.R. Yang, E. Yao, Y. Zhang, H.S. Zou, Studying the mechanisms of natural rubber pyrolysis gas generation using RMD simulations and TG-FTIR experiments, Energy Convers. Manage. 189 (2019) 143-152. [22] S. Deng, H. Zhuo, Y. Wang, S. Leng, G. Zhuang, X. Zhong, Z. Wei, Z. Yao, A.J. Wang, Multiscale simulation on product distribution from pyrolysis of styrene-butadiene rubber, Polymers (Basel). 11 (12) (2019) 1967-1980. [23] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, Gaussian 09, Revision D.01. Gaussian, Inc: Wallingford, CT, 2009. [24] A. Paajanen, J. Vaari, T. Verho, Crystallization of cross-linked polyethylene by molecular dynamics simulation, Polymer 171 (2019) 80-86. [25] A. Torres-Knoop, I. Kryven, V. Schamboeck, P.D. Iedema, Modeling the freeradical polymerization of hexanediol diacrylate (HDDA): A molecular dynamics and graph theory approach, Soft Matter 14 (17) (2018) 3404-3414. [26] H.J. Wang, Y.H. Feng, X.X. Zhang, W. Lin, Y.L. Zhao, Study of coal hydropyrolysis and desulfurization by ReaxFF molecular dynamics simulation, Fuel 145 (2015) 241-248. [27] C. Ashraf, A. Jain, Y. Xuan, A.C. van Duin, ReaxFF based molecular dynamics simulations of ignition front propagation in hydrocarbon/oxygen mixtures under high temperature and pressure conditions, Phys. Chem. Chem. Phys. 19 (7) (2017) 5004-5017. [28] M.J. Gao, X.X. Li, L. Guo, Pyrolysis simulations of Fugu coal by large-scale ReaxFF molecular dynamics, Fuel Process. Technol. 178 (2018) 197-205. [29] A.C. Van Duin, S. Dasgupta, F. Lorant, W.A. Goddard, ReaxFF: A reactive force field for hydrocarbons, J. Phys. Chem. A. 105 (41) (2001) 9396-9409. [30] R. Chaudret, A. Bick, X. Krokidis, Theoretical modeling of thermal decomposition of methylnaphthalene derivatives: Influence of substituents, Energy Fuels 30 (8) (2016) 6817-6821. [31] J.P. Larentzos, B.M. Rice, Transferable reactive force fields: Extensions of ReaxFF-lg to nitromethane, J. Phys. Chem. A 121 (9) (2017) 2001-2013. [32] F. Yin, C. Tang, Y. Tang, Y. Gui, Z. Zhao, Reactive molecular dynamics study of effects of small-molecule organic acids on PMIA thermal decomposition, J. Phys. Chem. B 122 (45) (2018) 10384-10392. [33] L.Z. Zhang, S.V. Zybin, A.C.T. van Duin, S. Dasgupta, W.A. Goddard III, Carbon cluster formation during thermal decomposition of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and 1,3,5-triamino-2,4,6-trinitrobenzene high explosives from ReaxFF reactive molecular dynamics simulations, J. Phys. Chem. A. 113 (2009) 10619-10640. [34] A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool, Modell. Simul. Mater. Sci. Eng. 18 (1) (2010) 015012-015018. [35] B. Danon, P. van der Gryp, C.E. Schwarz, J.F. Görgens, A review of dipentene (dllimonene) production from waste tire pyrolysis, J. Anal. Appl. Pyrolysis. 112 (2015) 1-13. [36] J.B. Zhou, Y. Qiao, W.X. Wang, E.W. Leng, J.C. Huang, Y. Yu, M.H. Xu, Formation of styrene monomer, dimer and trimer in the primary volatiles produced from polystyrene pyrolysis in a wire-mesh reactor, Fuel 182 (2016) 333-339. [37] F.Z. Chen, J.L. Qian, Studies on the thermal degradation of cis-1,4-polyisoprene, Fuel 81 (16) (2002) 2071-2077. |
[1] | Guohui Zhou, Kun Jiang, Zhenlei Wang, Xiaomin Liu. Insight into the behavior at the hygroscopicity and interface of the hydrophobic imidazolium-based ionic liquids [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 42-55. |
[2] | Mingjie Wei, Yong Wang. Structure and dynamics of water in TiO2 nano slits: The influence of interfacial interactions and pore sizes [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 67-74. |
[3] | Qingwei Gao, Yumeng Zhang, Aatto Laaksonen, Yudan Zhu, Xiaoyan Ji, Shuangliang Zhao, Yaojia Chen, Xiaohua Lu. Effect of dimethyl carbonate on the behavior of water confined in carbon nanotube [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 177-185. |
[4] | Zhiyong Xu, Zhongjin He, Xuebo Quan, Delin Sun, Zhaohong Miao, Hai Yu, Shengjiang Yang, Zheng Chen, Jinxiang Zeng, Jian Zhou. Molecular simulations of charged complex fluids: A review [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 206-226. |
[5] | Jiaqi Ding, Nan Xu, Manh Tien Nguyen, Qi Qiao, Yao Shi, Yi He, Qing Shao. Machine learning for molecular thermodynamics [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 227-239. |
[6] | Tong Tao, Shitao Wang, Yixin Qu, Dapeng Cao. Displacement of shale gas confined in illite shale by flue gas: A molecular simulation study [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 295-303. |
[7] | Kai Wang, Huiyan Zhang, Sheng Chu, Zhenting Zha. Pyrolysis of single large biomass particle: Simulation and experiments [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 375-382. |
[8] | Rui Shan, Yueyue Shi, Jing Gu, Yazhuo Wang, Haoran Yuan. Single and competitive adsorption affinity of heavy metals toward peanut shell-derived biochar and its mechanisms in aqueous systems [J]. Chinese Journal of Chemical Engineering, 2020, 28(5): 1375-1383. |
[9] | Jingyun Weng, Yiping Huang, Dule Hao, Yuanhui Ji. Recent advances of pharmaceutical crystallization theories [J]. Chinese Journal of Chemical Engineering, 2020, 28(4): 935-948. |
[10] | Xiaoning Mao, Qinglong Xie, Ying Duan, Shangzhi Yu, Xiaojiang Liang, Zhenyu Wu, Meizhen Lu, Yong Nie. Predictive models for characterizing the atomization process in pyrolysis of methyl ricinoleate [J]. Chinese Journal of Chemical Engineering, 2020, 28(4): 1023-1028. |
[11] | Gaofei Chen, Yaxiong An, Yuanhui Shen, Yayan Wang, Zhongli Tang, Bo Lu, Donghui Zhang. Effect of pore size on CH4/N2 separation using activated carbon [J]. Chinese Journal of Chemical Engineering, 2020, 28(4): 1062-1068. |
[12] | Chao Qian, Liang Zhao, Xin Ge, Xinzhi Chen. Influence of dispersants on coal-water slurry prepared from the solid residue of plasma pyrolysis of coal [J]. Chinese Journal of Chemical Engineering, 2020, 28(2): 566-570. |
[13] | Xin Dai, Jin Bai, Ping Yuan, Shiyu Du, Dongtao Li, Xiaodong Wen, Wen Li. The application of molecular simulation in ash chemistry of coal [J]. Chinese Journal of Chemical Engineering, 2020, 28(11): 2723-2732. |
[14] | Zhenhao Li, Bo Xing, Yan Ding, Yunchao Li, Shurong Wang. A high-performance biochar produced from bamboo pyrolysis with in-situ nitrogen doping and activation for adsorption of phenol and methylene blue [J]. Chinese Journal of Chemical Engineering, 2020, 28(11): 2872-2880. |
[15] | Haiying Wang, Hongjing Han, Enhao Sun, Yanan Zhang, Jinxin Li, Yanguang Chen, Hua Song, Hongzhi Zhao. Production of aryl oxygen-containing compounds from catalytic pyrolysis of bagasse lignin over LaTixFe1-xO3 [J]. Chinese Journal of Chemical Engineering, 2019, 27(8): 1939-1944. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||