Chinese Journal of Chemical Engineering ›› 2021, Vol. 29 ›› Issue (2): 212-224.doi: 10.1016/j.cjche.2020.10.031
Previous Articles Next Articles
Xiaoyan Zhuang1,2, Qian Wu1,2, Aihui Zhang1,2, Langxing Liao1,2, Baishan Fang1,2,3
Received:
2020-08-20
Revised:
2020-10-27
Online:
2021-02-28
Published:
2021-05-15
Contact:
Aihui Zhang, Baishan Fang
E-mail:fbs@xmu.edu.cn
Supported by:
Xiaoyan Zhuang, Qian Wu, Aihui Zhang, Langxing Liao, Baishan Fang. Single-molecule biotechnology for protein researches[J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 212-224.
[1] Q.K. Li, Q. Chen, P.C. Klauser, M.Y. Li, F. Zheng, N.X. Wang, X.Y. Li, Q.B. Zhang, X.M. Fu, Q. Wang, Y. Xu, L. Wang, Developing covalent protein drugs via proximity-enabled reactive therapeutics, Cell 182 (2020) 85–97. [2] A. Pandey, M. Mann, Proteomics to study genes and genomes, Nature 405 (6788) (2000) 837–846. [3] L.J. Sweetlove, A.R. Fernie, The role of dynamic enzyme assemblies and substrate channelling in metabolic regulation, Nat. Commun. 9 (2018) 2136. [4] L.T. Zhai, L.L. Feng, L. Xia, H.Y. Yin, S. Xiang, Crystal structure of glycogen debranching enzyme and insights into its catalysis and disease-causing mutations, Nat. Commun. 7 (2016) 11229. [5] M. Onizawa, S. Oshima, U. Schulze-Topphoff, J.A. Oses-Prieto, T. Lu, R. Tavares, T. Prodhomme, B. Duong, M.I. Whang, R. Advincula, A. Agelidis, J. Barrera, H. Wu, A. Burlingame, B.A. Malynn, S.S. Zamvil, A. Ma, The ubiquitin-modifying enzyme A20 restricts ubiquitination of the kinase RIPK3 and protects cells from necroptosis, Nat. Immunol. 16 (618) (2015) 837–846. [6] N. Walter, C. Huang, A. Manzo, M. Sobhy, Do-it-yourself guide: How to use the modern single-molecule toolkit, Nat. Methods 5 (6) (2008) 475–478. [7] M. Baaske, M. Foreman, F. Vollmer, Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform, Nat. Nanotechnol. 9 (11) (2014) 933–939. [8] S. Howorka, Z. Siwy, Nanopore analytics: Sensing of single molecules, Chem. Soc. Rev. 38 (8) (2009) 2360–2384. [9] C Tang, Y.X. Tang, Y.L Ye, Z.W. Yan, Z.X. Chen, L.J. Chen, L.Y. Zhang, J.Y Liu, J. Shi, H.P. Xia, W.J. Hong, Identifying the conformational isomers of singlemolecule cyclohexane at room temperature, Chem 6 (10) (2020) 2770–2781. [10] C.C. Huang, A.V. Rudnev, W.J. Hong, Break junction under electrochemical gating: Testbed for single-molecule electronics, Chem. Soc. Rev. 44 (4) (2015) 889–901. [11] K. Bavishi, N.S. Hatzakis, Shedding light on protein folding, structural and functional dynamics by single molecule studies, Molecules 19 (12) (2014) 19407–19434. [12] G. Huang, K. Willems, M. Soskine, C. Wloka, G. Maglia, Electro-osmotic capture and ionic discrimination of peptide and protein biomarkers with FraC nanopores, Nat. Commun. 8 (2017) 935. [13] S.W. Hla, K.H. Rieder, STM control of chemical reactions: Single-molecule synthesis, Rev. Phys. Chem. 54 (2003) 307–330. [14] M. Rief, M. Gautel, F. Oesterhelt, J.M. Fernandez, H.E. Gaub, Reversible unfolding of individual titin immunoglobulin domains by AFM, Science 276 (5315) (1997) 1109–1112. [15] N. Hacohen, C.J.X. Ip, R. Gordon, Analysis of egg white protein composition with double nanohole optical tweezers, ACS Omega 3 (5) (2018) 5266–5272. [16] Y.J. Yang, H.L. Dong, X.W. Qiang, H. Fu, E.C. Zhou, C. Zhang, X.F. Chen, F.C. Jia, L. Dai, Z.J. Tan, X.H. Zhang, Cytosine methylation enhances dna condensation revealed by equilibrium measurements using magnetic tweezers, J. Am. Chem. Soc. 142 (2020) 9203–9209. [17] Y.H. Luo, L.L. Wu, J. Tu, Z.H. Lu, Application of solid-state nanopore in protein detection, Int. J. Mol. Sci. 21 (8) (2020) 2808. [18] E. Neher, B. Sakmann, Single-channel currents recorded from membrane of denervated frog muscle fibres, Nature 260 (5554) (1976) 799–802. [19] J. Li, D. Stein, C. McMullan, D. Branton, M.J. Aziz, J.A. Golovchenko, Ion-beam sculpting at nanometre length scales, Nature 412 (6843) (2001) 166–169. [20] O.K. Zahid, F. Wang, J.A. Ruzicka, E.W. Taylor, A.R. Hall, Sequence-specific recognition of microRNAs and other short nucleic acids with solid-state nanopores, Nano Lett. 16 (3) (2016) 2033–2039. [21] G. Perez-Mitta, M.E. Toimil-Molares, C. Trautmann, W.A. Marmisolle, O. Azzaroni, Molecular design of solid-state nanopores: Fundamental concepts and applications, Adv. Mater. 31 (37) (2019) 1901483. [22] M. Waugh, K. Briggs, D. Gunn, M. Gibeault, S. King, Q. Ingram, A.M. Jimenez, S. Berryman, D. Lomovtsev, L. Andrzejewski, V. Tabard-Cossa, Solid-state nanopore fabrication by automated controlled breakdown, Nat. Protoc. 15 (1) (2020) 122–143. [23] O.M. Eggenberger, C.F. Ying, M. Mayer, Surface coatings for solid-state nanopores, Nanoscale 11 (2019) 19636–19657. [24] K. Chuah, Y.F. Wu, S.R.C. Vivekchand, K. Gaus, P.J. Reece, A.P. Micolich, J.J. Gooding, Nanopore blockade sensors for ultrasensitive detection of proteins in complex biological samples, Nat. Commun. 10 (2019) 2109. [25] J.J. Sha, W. Si, B. Xu, S. Zhang, K. Li, K.B. Lin, H.J. Shi, Y.F. Chen, Identification of spherical and nonspherical proteins by a solid-state nanopore, Anal. Chem. 90 (23) (2018) 13826–13831. [26] E.C. Yusko, B.R. Bruhn, O.M. Eggenberger, J. Houghtaling, R.C. Rollings, N.C. Walsh, S. Nandivada, M. Pindrus, A.R. Hall, D. Sept, J.L. Li, D.S. Kalonia, M. Mayer, Real-time shape approximation and fingerprinting of single proteins using a nanopore, Nat. Nanotechnol. 12 (4) (2017) 360–367. [27] J. Houghtaling, C.F. Ying, O.M. Eggenberger, A. Fennouri, S. Nandivada, M. Acharjee, J.L. Li, A.R. Hall, M. Mayer, D. Sept, Estimation of shape, volume, and dipole moment of individual proteins freely transiting a synthetic nanopore, ACS Nano 13 (5) (2019) 5231–5242. [28] X.Y. Wang, M.D. Wilkinson, X.Y. Lin, R. Ren, K.R. Willison, A.P. Ivanov, J. Baum, J.B. Edel, Single-molecule nanopore sensing of actin dynamics and drug binding, Chem. Sci. 11 (4) (2020) 970–979. [29] C.C. Chau, S.E. Radford, E.W. Hewitt, P. Actis, Macromolecular crowding enhances the detection of DNA and proteins by a solid-state nanopore, Nano Lett. 20 (7) (2020) 5553–5561. [30] L. Restrepo-Perez, C. Joo, C. Dekker, Paving the way to single-molecule protein sequencing, Nat. Nanotechnol. 13 (2018) 786–796. [31] C. Plesa, S.W. Kowalczyk, R. Zinsmeester, A.Y. Grosberg, Y. Rabin, C. Dekker, Fast translocation of proteins through solid state nanopores, Nano Lett. 13 (2013) 658–663. [32] L. Restrepo-Perez, G. Huang, P.R. Bohlander, N. Worp, R. Eelkema, G. Maglia, C. Joo, C. Dekker, Resolving chemical modifications to a single amino acid within a peptide using a biological nanopore, ACS Nano 13 (12) (2019) 13668–13676. [33] V. Van Meervelt, M. Soskine, S. Singh, G.K. Schuurman-Wolters, H.J. Wijma, B. Poolman, G. Maglia, Real-time conformational changes and controlled orientation of native proteins inside a protein nanoreactor, J. Am. Chem. Soc. 139 (51) (2017) 18640–18646. [34] F.Z. Hu, B. Angelov, S. Li, N. Li, X.B. Lin, A.H. Zou, Single-molecule study of peptides with the same amino acid composition but different sequences by using an aerolysin nanopore, ChemBioChem 21 (17) (2020) 2467–2473. [35] S. Wang, J. Cao, W.D. Jia, W.M. Guo, S.H. Yan, Y.Q. Wang, P.K. Zhang, H.Y. Chen, S. Huang, Single molecule observation of hard–soft-acid–base (HSAB) interaction in engineered Mycobacterium smegmatis porin A (MspA) nanopores, Chem. Sci. 11 (3) (2020) 879. [36] E.L. Bonome, F. Cecconi, M. Chinappi, Translocation intermediates of ubiquitin through an a-hemolysin nanopore: implications for detection of posttranslational modifications, Nanoscale 11 (2019) 9920. [37] D.P. Hoogerheide, P.A. Gurnev, T.K. Rostovtseva, S.M. Bezrukov, Effect of a post-translational modification mimic on protein translocation through a nanopore, Nanoscale 12 (2020) 11070. [38] W.Q. Zhou, H. Qiu, Y.F. Guo, W.L. Guo, Molecular insights into distinct detection properties of a-Hemolysin, MspA, CsgG, and aerolysin nanopore sensors, J. Phys. Chem. B 124 (9) (2020) 1611–1618. [39] G. Huang, A. Voet, G. Maglia, FraC nanopores with adjustable diameter identify the mass of opposite-charge peptides with 44 dalton resolution, Nat Commun. 10 (2019) 835. [40] L. Restrepo-Perez, C.H. Wong, G. Maglia, C. Dekker, C. Joo, Label-free detection of post-translational modifications with a nanopore, Nano Lett. 19 (11) (2019) 7957–7964. [41] K. Willems, D. Ruic, A. Biesemans, N.S. Galenkamp, P. Van Dorpe, G. Maglia, Engineering and modeling the electrophoretic trapping of a single protein inside a nanopore, ACS Nano 13 (9) (2019) 9980–9992. [42] N.S. Galenkamp, M. Soskine, J. Hermans, C. Wloka, G. Maglia, Direct electrical quantification of glucose and asparagine from bodily fluids using nanopores, Nat. Commun. 9 (2018) 4085. [43] C. Wloka, V. Van Meervelt, D. van Gelder, N. Danda, N. Jager, C.P. Williams, G. Maglia, Label-free and real-time detection of protein ubiquitination with a biological nanopore, ACS Nano 11 (5) (2017) 4387–4394. [44] N.S. Galenkamp, A. Biesemans, G. Maglia, Directional conformer exchange in dihydrofolate reductase revealed by single-molecule nanopore recordings, Nat. Chem. 12 (5) (2020) 481–488. [45] C. Cao, N. Cirauqui, M.J. Marcaida, E. Buglakova, A. Duperrex, A. Radenovic, M. Dal Peraro, Single-molecule sensing of peptides and nucleic acids by engineered aerolysin nanopores, Nat. Commun. 10 (2019) 4918. [46] H. Ouldali, K. Sarthak, T. Ensslen, F. Piguet, P. Manivet, J. Pelta, J.C. Behrends, A. Aksimentiev, A. Oukhaled, Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore, Nat. Biotechnol. 38 (2) (2020) 176– 181. [47] K. Sun, Y. Ju, C. Chen, P. Zhang, E. Sawyer, Y.F. Luo, J. Geng, Single-molecule interaction of peptides with a biological nanopore for identification of protease activity, Small Methods (2020) 1900892. [48] G.K. Binnig, H. Rohrer, Scanning tunneling microscopy-from birth to adolescence, Rev. Mod. Phys. 59 (615) (1987) 615–625. [49] G. Binnig, C.F. Quate, C.H. Gerber, Atomic force microscope, Phys. Rev. Lett. 56 (9) (1986) 930–933. [50] Q.J. Chi, O. Farver, J. Ulstrup, Long-range protein electron transfer observed at the single-molecule level: In situ mapping of redox-gated tunneling resonance, Proc. Natl. Acad. Sci. 102 (45) (2005) 16203–16208. [51] N.J. Tao, Probing potential-tuned resonant tunneling through redox molecules with scanning tunneling microscopy, Phys. Rev. Lett. 76 (21) (1996) 4066–4069. [52] M.S. Inkpen, T. Albrecht, Probing electron transport in proteins at room temperature with single-molecule precision, ACS Nano 6 (1) (2012) 13–16. [53] R.J. Sha, L.M. Xiang, C.R. Liu, A. Balaeff, Y.Q. Zhang, P. Zhang, Y.Q. Li, D.N. Beratan, N.J. Tao, N.C. Seeman, Charge splitters and charge transport junctions based on guanine quadruplexes, Nat. Nanotechnol. 13 (4) (2018) 316–321. [54] X.Y. Xiao, B.Q. Xu, N.J. Tao, Changes in the conductance of single peptide molecules upon metal-ion binding, Angew. Chem. Int. Edit. 43 (45) (2004) 6148–6152. [55] X.Y. Zhang, J. Shao, S.X. Jiang, B. Wang, Y. Zheng, Structure-dependent electrical conductivity of protein: its differences between alpha domain and beta-domain structures, Nanotechnology 26 (12) (2015) 125702. [56] J.M. Brisendine, S. Refaely-Abramson, Z.F. Liu, J. Cui, F. Ng, J.B. Neaton, R.L. Koder, L. Venkataraman, Probing charge transport through peptide bonds, J. Phys. Chem. Lett. 9 (4) (2018) 763–767. [57] A.C. Aragonès, E. Medina, M. Ferrer-Huerta, N. Gimeno, M. Teixidó, J.L. Palma, N.J. Tao, J.M. Ugalde, E. Giralt, I. Díez-Pérez, V. Mujica, Measuring the spinpolarization power of a single chiral molecule, Small 13 (2) (2017) 1602519. [58] X.Y. Zhuang, A.H. Zhang, S.Y. Qiu, C. Tang, S.Q. Zhao, H.C. Li, Y.H. Zhang, Y.L. Wang, B.J. Wang, B.S. Fang, W.J. Hong, Coenzyme coupling boosts charge transport through single bioactive enzyme junctions, iScience, 23 (4) (2020) 101001. [59] L. Venkataraman, J.E. Klare, C. Nuckolls, M.S. Hybertsen, M.L. Steigerwald, Dependence of single-molecule junction conductance on molecular conformation, Nature 442 (7105) (2006) 904–907. [60] S. Huang, J. He, S.A. Chang, P.M. Zhang, F. Liang, S.Q. Li, M. Tuchband, A. Fuhrmann, R. Ros, S. Lindsay, Identifying single bases in a DNA oligomer with electron tunnelling, Nat. Nanotechnol. 5 (12) (2010) 868–873. [61] B.Q. Xu, X.Y. Xiao, X.M. Yang, L. Zang, N.J. Tao, Large gate modulation in the current of a room temperature single molecule transistor, J. Am. Chem. Soc. 127 (8) (2005) 2386. [62] F. Chen, J. He, C. Nuckolls, T. Roberts, J.E. Klare, S. Lindsay, A molecular switch based on potential-induced changes of oxidation state, Nano Lett. 5 (3) (2005) 503. [63] J.M. Artés, I. Díez-Pérez, F. Sanz, P. Gorostiz, Direct measurement of electron transfer distance decay constants of single redox proteins by electrochemical tunneling spectroscopy, ACS Nano 5 (3) (2011) 2060–2066. [64] M.P. Ruiz, A.C. Aragones, N. Camarero, J.G.M. Ortega, L.A. Zotti, R. Perez, J.C. Cuevas, P. Gorostiza, I. Diez-Perez, Bioengineering a single-protein junction, J. Am. Chem. Soc. 139 (43) (2017) 15337–15346. [65] B.T. Zhang, H.Q. Deng, S. Mukherjee, W.S. Song, X. Wang, S. Lindsay, Engineering an enzyme for direct electrical monitoring of activity, ACS Nano 14 (2) (2020) 1360–1368. [66] B.T. Zhang, W.S. Song, P. Pang, Y.N. Zhao, P.M. Zhang, I. Csabai, G. Vattay, S. Lindsay, Observation of giant conductance fluctuations in a protein, Nano Futures 1 (3) (2017) 035002. [67] B.T. Zhang, W.S. Song, P. Pang, H.F. Lai, Q. Chen, P.M. Zhang, S. Lindsay, Role of contacts in long-range protein conductance, Proc. Natl. Acad. Sci. USA 116 (13) (2019) 5886–5891. [68] B.T. Zhang, S. Lindsay, Electronic decay length in a protein molecule, Nano Lett. 19 (6) (2019) 4017–4022. [69] B.T. Zhang, W.S. Song, J. Brown, R. Nemanich, S. Lindsay, Electronic conductance resonance in non-redox-active proteins, J. Am. Chem. Soc. 142 (13) (2020) 6432–6438. [70] B. Voigtländer, Scanning probe microscopy: Atomic force microscopy and scanning tunneling microscopy, Springer, US, 2015. [71] F.J. Giessibl, Atomic-resolution of the silicon (111)-(7x7) surface by atomicforce microscopy, Science 267 (5194) (1995) 68–71. [72] H.B. Li, P. Zheng, Single molecule force spectroscopy: A new tool for bioinorganic chemistry, Curr. Opin. Chem. Biol. 43 (2018) 58–67. [73] Y. Bao, Z.L. Luo, S.X. Cui, Environment-dependent single-chain mechanicsof synthetic polymers and biomacromolecules byatomic force microscopybased single-moleculeforce spectroscopy and the implications foradvanced polymer materials, Chem. Soc. Rev. 49 (2020) 2799. [74] S. Ramachandran, F. Teran Arce, R. Lal, Potential role of atomic force microscopy in systems biology, Wires. Syst. Biol. Med. 3 (6) (2011) 702–716. [75] F. Rico, L. Gonzalez, I. Casuso, M. Puig-Vidal, S. Scheuring, High-speed force spectroscopy unfolds titin at the velocity of molecular dynamics simulations, Science 342 (6159) (2013) 741–743. [76] S. Lv, D.M. Dudek, Y. Cao, M.M. Balamurali, J. Gosline, H.B. Li, Designed biomaterials to mimic the mechanical properties of muscles, Nature 465 (7294) (2010) 69–73. [77] B. Knoops, S. Becker, M.A. Poncin, J. Glibert, S. Derclaye, A. Clippe, D. Alsteens, Specific interactions measured by AFM on living cells between peroxiredoxin-5 and TLR4: Relevance for mechanisms of innate immunity, Cell Chem. Biol. 25 (5) (2018) 550–559. [78] A. Sumino, T. Sumikama, T. Uchihashi, S. Oiki, High-speed AFM reveals accelerated binding of agitoxin-2 to a K+ channel by induced fit, Sci. Adv., 5 (2019) eaax0495. [79] M.V. Sukhanova, S. Abrakhi, V. Joshi, D. Pastre, M.M. Kutuzov, R.O. Anarbaev, P.A. Curmi, L. Hamon, O.I. Lavrik, Single molecule detection of PARP1 and PARP2 interaction with DNA strand breaks and their poly(ADPribosyl)ation using high-resolution AFM imaging, Nucleic Acids Res. 44 (6) (2016) e60. [80] E.L. Florin, V.T. Moy, H.E. Gaub, Adhesion forces between individual ligandreceptor pairs, Science 264 (5157) (1994) 415–417. [81] D.H. Kim, J.E. Lee, Z.Y. Xu, K.R. Geem, Y. Kwon, J.W. Park, I. Hwang, Cytosolic targeting factor AKR2A captures chloroplast outer membrane-localized client proteins at the ribosome during translation, Nat. Commun. 6 (2015) 6843. [82] R. Zhu, S. Howorka, J. Proll, F. Kienberger, J. Preiner, J. Hesse, A. Ebner, V.P. Pastushenko, H.J. Gruber, P. Hinterdorfer, Nanomechanical recognition measurements of individual DNA molecules reveal epigenetic methylation patterns, Nat. Nanotechnol. 5 (11) (2010) 788–791. [83] A.E.M. Beedle, A. Lezamiz, G. Stirnemann, S. Garcia-Manyes, The mechanochemistry of copper reports on the directionality of unfolding in model cupredoxin proteins, Nat. Commun. 6 (2015) 7894. [84] J.H. Xia, J.C. Zuo, H.B. Li, Single molecule force spectroscopy reveals that the oxidation state of cobalt ions plays an important role in enhancing the mechanical stability of proteins, Nanoscale 11 (42) (2019) 19791–19796. [85] R.C. Bernardi, E. Durner, C. Schoeler, K.H. Malinowska, B.G. Carvalho, E.A. Bayer, Z. Luthey-Schulten, H.E. Gaub, M.A. Nash, Mechanisms of nanonewton mechanostability in a protein complex revealed by molecular dynamics simulations and single-molecule force spectroscopy, J. Am. Chem. Soc. 141 (37) (2019) 14752–14763. [86] J.A. Rivas-Pardo, J. Alegre-Cebollada, C.A. Ramirez-Sarmiento, J.M. Fernandez, V. Guixe, Identifying sequential substrate binding at the single-molecule level by enzyme mechanical stabilization, ACS Nano 9 (4) (2015) 3996–4005. [87] A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, S. Chu, Observation of a single-beam gradient force optical trap for dielectric particles, Opt. Lett. 11 (5) (1986) 288– 290. [88] K. Svoboda, C.F. Schmidt, B.J. Schnapp, S.M. Block, Direct observation of kinesin stepping by optical trapping interferometry, Nature 365 (6448) (1993) 721–727. [89] J.T. Finer, R.M. Simmons, J.A. Spudich, Single myosin molecule mechanicspiconewton forces and nanometer steps, Nature 368 (6467) (1994) 113–119. [90] D.B. Ritchie, M.T. Woodside, Probing the structural dynamics of proteins and nucleic acids with optical tweezers, Curr. Opin. Struc. Biol. 34 (2015) 43–51. [91] K. Svoboda, S.M. Block, Biological applications of optical forces, Annu. Rev. Biophys. Biomol. Struct. 23 (1994) 247–285. [92] Z. Ganim, M. Rief, Mechanically switching single-molecule fluorescence of GFP by unfolding and refolding, Proc. Natl. Acad. Sci. USA 114 (42) (2017) 11052–11056. [93] E.M. Patrick, J.D. Slivka, B. Payne, M.J. Comstock, J.C. Schmidt, Observation of processive telomerase catalysis using high-resolution optical tweezers, Nat. Chem. Biol. 16 (2020) 801–812. [94] M.D. Wang, H. Yin, R. Landick, J. Gelles, S.M. Block, Stretching DNA with optical tweezers, Biophys. J. 72 (3) (1997) 1335–1346. [95] M. Caldarini, P. Sonar, I. Valpapuram, D. Tavella, C. Volonté, V. Pandini, M.A. Vanoni, A. Aliverti, R.A. Broglia, G. Tiana, C. Cecconi, The complex folding behavior of HIV-1-protease monomer revealed by optical-tweezer singlemolecule experiments and molecular dynamics simulations, Biophys. Chem. 195 (2014) 32–42. [96] H. Wang, X.Q. Gao, X.D. Hu, X.T. Hu, C.G. Hu, H.B. Li, Mechanical unfolding and folding of a complex slipknot protein probed by using optical tweezers, Biochemistry 58 (47) (2019) 4751–4760. [97] C.Z. He, S. Li, X.Q. Gao, A. Xiao, C.G. Hu, X.D. Hu, X.T. Hua, H.B. Li, Direct observation of the fast and robust folding of a slipknotted protein by optical tweezers, Nanoscale 11 (2019) 3945–3951. [98] Y.X. Hao, C. Canavan, S.S. Taylor, R.A. Maillard, Integrated method to attach DNA handles and functionally select proteins to study folding and proteinligand interactions with optical tweezers, Sci. Rep. 7 (2017) 10843. [99] B. Pelz, G. Zoldak, F. Zeller, M. Zacharias, M. Rief, Subnanometre enzyme mechanics probed by single-molecule force spectroscopy, Nat. Commun. 7 (2016) 10848. [100] H. Wang, X.Q. Gao, H.B. Li, Single molecule force spectroscopy reveals the mechanical design governing the efficient translocation of the bacterial toxin protein RTX, J. Am. Chem. Soc. 141 (51) (2019) 20498–20506. [101] D. Kostrz, H.K. Wayment-Steele, J.L. Wang, M. Follenfant, V.S. Pande, T.R. Strick, C. Gosse, A modular DNA scaffold to study protein-protein interactions at single-molecule resolution, Nat. Nanotechnol. 14 (2019) 988–993. [102] M. Di Antonio, A. Ponjavic, A. Radzevicius, R.T. Ranasinghe, M. Catalano, X.Y. Zhang, J.Z. Shen, L.M. Needham, S.F. Lee, D. Klenerman, S. Balasubramanian, Single-molecule visualization of DNA G-quadruplex formation in live cells, Nat. Chem. 12 (2020) 832–837. [103] L. Mejia, I. Franco, Force-conductance spectroscopy of a single-molecule reaction, Chem. Sci. 10 (11) (2019) 3249–3256. [104] A. Pirrotta, L. De Vico, G.C. Solomon, I. Franco, Single-molecule forceconductance spectroscopy of hydrogen-bonded complexes, J. Chem. Phys. 146 (9) (2017) 092329. [105] R.B. Zhou, B.R. Han, C.L. Xia, X.W. Zhuang, Membrane-associated periodic skeleton is a signaling platform for RTK transactivation in neurons, Science 365 (6456) (2019) 929–934. [106] X.Y. Lin, A.P. Ivanov, J.B. Edel, Selective single molecule nanopore sensing of proteins using DNA aptamer- functionalised gold nanoparticles, Chem. Sci. 8 (5) (2017) 3905–3912. [107] L. Restrepo-Perez, C. Joo, C. Dekker, Paving the way to single-molecule protein sequencing, Nat. Nanotechnol. 13 (9) (2018) 786–796. |
[1] | Mingjie Wei, Yong Wang. Structure and dynamics of water in TiO2 nano slits: The influence of interfacial interactions and pore sizes [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 67-74. |
[2] | Yanfeng Liu, Xiaomin Dong, Bin Wang, Rongzhen Tian, Jianghua Li, Long Liu, Guocheng Du, Jian Chen. Food synthetic biology-driven protein supply transition: From animal-derived production to microbial fermentation [J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 29-36. |
[3] | Wenqiang Li, Wentao Sun, Chun Li. Engineered microorganisms and enzymes for efficiently synthesizing plant natural products [J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 62-73. |
[4] | Huiling Wei, Mengyue Wu, Aili Fan, Haijia Su. Recombinant protein production in the filamentous fungus Trichoderma [J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 74-81. |
[5] | Bekir Engin Eser, Yan Zhang, Li Zong, Zheng Guo. Self-sufficient Cytochrome P450s and their potential applications in biotechnology [J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 121-135. |
[6] | Han Zhang, Yunpeng Bai, Ning Zhu, Jianhe Xu. Microfluidic reactor with immobilized enzyme-from construction to applications: A review [J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 136-145. |
[7] | Yu Kiat Lin, Hui Yi Leong, Tau Chuan Ling, Dong-Qiang Lin, Shan-Jing Yao. Raman spectroscopy as process analytical tool in downstream processing of biotechnology [J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 204-211. |
[8] | Hui Huang, Lulu Lei, Juan Bai, Ling Zhang, Donghui Song, Jingqi Zhao, Jiali Li, Yongxin Li. Efficient elimination and detection of phenolic compounds in juice using laccase mimicking nanozymes [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 167-175. |
[9] | Jing Wang, Yongqin Lv. An enzyme-loaded reactor using metal-organic framework-templated polydopamine microcapsule [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 317-325. |
[10] | Yifei Zhang, Henry Hess. Microenvironmental engineering: An effective strategy for tailoring enzymatic activities [J]. Chinese Journal of Chemical Engineering, 2020, 28(8): 2028-2036. |
[11] | Ranran Wu, Haiyan Song, Yuanming Wang, Lei Wang, Zhiguang Zhu. Multienzyme co-immobilization-based bioelectrode: Design of principles and bioelectrochemical applications [J]. Chinese Journal of Chemical Engineering, 2020, 28(8): 2037-2050. |
[12] | Yan Zhang, Bekir Engin Eser, Peter Kristensen, Zheng Guo. Fatty acid hydratase for value-added biotransformation: A review [J]. Chinese Journal of Chemical Engineering, 2020, 28(8): 2051-2063. |
[13] | Ali Reza Hormozi Jangi, Mohammad Reza Hormozi Jangi, Saeed Reza Hormozi Jangi. Detection mechanism and classification of design principles of peroxidase mimic based colorimetric sensors: A brief overview [J]. Chinese Journal of Chemical Engineering, 2020, 28(6): 1492-1503. |
[14] | An Chen, Shaowei Li, Jianhong Xu. A novel approach to study the interactions between polymeric stabilized micron-sized oil droplets by optical tweezers [J]. Chinese Journal of Chemical Engineering, 2020, 28(5): 1368-1374. |
[15] | Jelena Bebić, Katarina Banjanac, Marija Ćorović, Ana Milivojević, Milica Simović, Aleksandar Marinković, Dejan Bezbradica. Immobilization of laccase from Myceliophthora thermophila on functionalized silica nanoparticles: Optimization and application in lindane degradation [J]. Chinese Journal of Chemical Engineering, 2020, 28(4): 1136-1144. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|