Chin.J.Chem.Eng. ›› 2018, Vol. 26 ›› Issue (5): 1119-1131.doi: 10.1016/j.cjche.2017.10.025
• Chemical Engineering Thermodynamics • Previous Articles Next Articles
S. Chauhan, Vivek Sharma, Maninder Kaur, Poonam Chaudhary
Received:
2017-07-26
Revised:
2017-09-20
Online:
2018-05-28
Published:
2018-06-29
Contact:
S.Chauhan,E-mail address:scschauhan19@gmail.com
E-mail:scschauhan19@gmail.com
S. Chauhan, Vivek Sharma, Maninder Kaur, Poonam Chaudhary. Temperature-dependent aggregation of bio-surfactants in aqueous solutions of galactose and lactose: Volumetric and viscometric approach[J]. Chin.J.Chem.Eng., 2018, 26(5): 1119-1131.
[1] J.M. Valderrama, P. Wilde, A. Macierzanka, A. Mackie, The role of bile salts in digestion, Adv. Colloid Interf. Sci. 165(2011) 36-46.[2] B. De Castro, P.G. Ameiro, C. Guimaraes, J. Lima, S. Reis, Study of partition of nitrazepam in bile salt micelles and the role of lecithin, J. Pharm. Biomed. Anal. 24(2001) 595-602.[3] T.S. Wiedmann, L. Kamel, Examination of the solubilization of drugs by bile salt micelles, J. Pharm. Sci. 9(2002) 1743-1764.[4] R. Ninomiya, K. Matsuoka, Y. Moroi, Micelle formation of sodium chenodeoxycholate and solubilization into the micelles:comparison with other unconjugated bile salts, Biochem. Biophys. Acta 1634(2003) 116-125.[5] C.L. Bowe, L. Mokhtarzadeh, P.N. Venkatesen, S. Babu, H. Axelrod, M.J. Sofia, R. Kakarla, T.Y. Chan, J.S. Kim, H.J. Lee, G.L. Amidon, S.Y. Choe, S. Walker, D. Kahne, Design of compounds that increase the absorption of polar molecules, Proc. Natl. Acad. Sci. U. S. A. 94(1997) 12218-12223.[6] G.S. Gordon, A.C. Moses, R.D. Silver, J.R. Flier, M.C. Carey, Nasal absorption of insulin:enhancement by hydrophobic bile salts, Proc. Natl. Acad. Sci. U. S. A. 82(1985) 7419-7423.[7] D. Madenci, S.U. Egelhaaf, Self-assembly in aqueous bile salt solutions, Curr. Opin. Colloid Interface Sci. 15(2010) 109-115.[8] Y.S. Elnaggar, Multifaceted applications of bile salts in pharmacy:an emphasis on nanomedicine, Int. J. Nanomedicine 10(2015) 3955-3971.[9] J. Li, X. Wang, T. Zhang, C. Wang, Z. Huang, X. Luo, Y. Deng, A review on phospholipids and their main applications in drug delivery systems, Asian J. Pharm. Sci. 10(2015) 81-98.[10] B.C. Herold, R. Kirkpatrick, D. Marcellino, A. Travelstead, V. Pilipenko, H. Krasa, J. Bremer, L.J. Dong, M.D. Cooper, Bile salts:natural detergents for the prevon of sexually transmitted diseases, Antimicrob. Agents Chemother. 43(1999) 745-751.[11] P.K. Banipal, N. Aggarwal, T.S. Banipal, Study on interactions of saccharides and their derivatives with potassium phosphate monobasic (1:1 electrolyte) in aqueous solutions at different temperatures, J. Mol. Liq. 196(2014) 291-299.[12] S. Nithiyanantham, L. Palaniappan, Ultrasonic study on some monosaccharides in aqueous media at 298.15 K, Arab. J. Chem. 5(2012) 25-30.[13] T.C. Bai, G.B. Yan, Viscosity B-coefficients and activation parameters for viscous flow of a solution of heptanedioic acid in aqueous sucrose solution, Carbohydr. Res. 338(2003) 2921-2927.[14] A. Ali, P. Bidhuri, N.A. Malik, S. Uzair, Density, viscosity, and refractive index of mono-, di-, and tri-saccharides in aqueous glycine solutions at different temperatures, Arab. J. Chem. (2014), https://doi.org/10.1016/j.arabjc.2014.08.027.[15] D.M. Cirin, M.M. Posa, V.S. Krstonosic, Interactions between sodium cholate or sodium Deoxycholate and nonionic surfactant (tween 20 or tween 60) in aqueous solution, Ind. Eng. Chem. Res. 51(2012) 3670-3676.[16] C.W. Njauw, C.Y. Cheng, V.A. Ivanov, A.R. Khokhlov, S.H. Tung, Molecular interactions between lecithin and bile salts/acids in oils and their effects on reverse micellization, Langmuir 29(2013) 3879-3888.[17] D. Madenci, A. Salonen, P. Schurtenberger, J.S. Pedersen, S.U. Egelhaaf, Simple model for the growth behaviour of mixed lecithin-bile salt micelles, Phys. Chem. Chem. Phys. 13(2011) 3171-3178.[18] N. Funasaki, M. Fukuba, T. Hattori, S. Ishikawa, T. Okunoa, S. Hirota, Micelle formation of bile salts and zwitterionic derivative as studied by two-dimensional NMR spectroscopy, Chem. Phys. Lipids 142(2006) 43-57.[19] K. Kumar, S. Chauhan, Surface tension and UV-visible investigations of aggregation and adsorption behavior of NaC and NaDC in water-amino acid mixtures, Fluid Phase Equilib. 394(2015) 165-174.[20] K. Manna, C.H. Chang, A.K. Panda, Physicochemical studies on the catanionics of alkyltrimethylammonium bromides and bile salts in aqueous media, Colloids Surf. A Physicochem. Eng. Asp. 415(2012) 10-21.[21] G.G. Gaitano, A. Compostizo, L.S. Martin, G. Tardojas, Speed of sound, density, and molecular modeling studies on the inclusion complex between sodium cholate and β-cyclodextrin, Langmuir 13(1997) 2235-2241.[22] K. Kumar, B.S. Patial, S. Chauhan, Conductivity and fluorescence studies on the micellization properties of sodium cholate and sodium deoxycholate in aqueous medium at different temperatures:effect of selected amino acids, J. Chem. Thermodyn. 82(2016) 25-33.[23] A.P. Davis, R.S. Wareham, Carbohydrate recognition through noncovalent interactions:a challenge for biomimetic and supramolecular chemistry, Angew. Chem. Int. Ed. 38(1999) 2978-2996.[24] P. Venkatesan, Y. Cheng, D. Kahne, Hydrogen bonding in micelle formation, J. Am. Chem. Soc. 116(1994) 6955-6956.[25] S. Chauhan, V. Sharma, K. Singh, M.S. Chauhan, K. Singh, Influence of lactose on the micellar behaviour and surface activity of bile salts as revealed through fluorescence and surface tension studies at varying temperatures, J. Mol. Liq. 222(2016) 67-76.[26] S. Chauhan, K. Singh, K. Kumar, S.C. Neelakantan, G. Kumar, Drug-amino acid interactions in aqueous medium:volumetric, compressibility, and viscometric studies, J. Chem. Eng. Data 61(2016) 788-796.[27] S. Chauhan, K. Sharma, D.S. Rana, G. Kumar, A. Umar, Volumetric and conductance studies of cetyltrimethyl ammonium bromide in aqueous glycine, J. Solut. Chem. 42(2013) 634-656.[28] V. Bhardwaj, P. Sharma, M.N. Noolvib, H.M. Patel, S. Chauhan, M.S. Chauhan, K. Sharma, Thermo-physical examination:synthesized2-furano-4(3H)-quinazolinone and open quinazolinone (diamide) anticancer analogs with sodium dodecyl sulphate, Thermochim. Acta 573(2013) 65-72.[29] M. Das, S. Das, A.K. Pattanaik, Acoustical behaviour of sodium nitroprusside in aquoorganic solvent media at 308.15 K, J. Chem. (2013), https://doi.org/10.1155/2013/942430.[30] S. Chauhan, M. Kaur, D.S. Rana, M.S. Chauhan, Volumetric analysis of structural changes of cationic micelles in the presence of quaternary ammonium salts, J. Chem. Eng. Data 61(2016) 3770-3778.[31] I. Bahadur, N. Deenadayalu, Apparent molar volume and apparent molar isentropic compressibility for the binary systems {methyltrioctyl ammonium bis (trifluoromethylsulfonyl) imide + ethyl acetate or ethanol} at different temperatures under atmospheric pressure, Thermochim. Acta 566(2013) 77-83.[32] T.S. Banipal, D. Kaur, P.K. Banipal, G. Singh, Thermodynamic and transport properties of L-serine and L-threonine in aqueous sodium acetate and magnesium acetate solutions at T=298.15 K, J. Chem. Thermodyn. 39(2007) 371-384.[33] J. Singh, T. Kaur, V. Ali, D.S. Gill, Ultrasonic velocities and isentropic compressibilities of some tetraalkylammonium and copper (I) salts in acetonitrile and benzonitrile, J. Chem. Soc. Faraday Trans. 90(1994) 579-582.[34] T. Banerjee, N. Kishore, Interactions of some amino acids with aqueous tetraethylammonium bromide at 298.15 K:a volumetric approach, J. Solut. Chem. 34(2005) 137-153.[35] R. Sadeghi, S. Shahabi, A comparison study between sodium dodecyl sulfate and sodium dodecyl sulfonate with respect to the thermodynamic properties, micellization, and interaction with poly (ethylene glycol) in aqueous solutions, J. Chem. Thermodyn. 43(2011) 1361-1370.[36] T. Mehrian, A. De Keizer, A. Korteweg, J. Lyklema, Thermodynamics of micellization of n-alkylpyridinium chlorides, Colloids Surf. A Physicochem. Eng. Asp. 71(1993) 255-267.[37] S. Chauhan, L. Pathania, K. Sharma, G. Kumar, Volumetric, acoustical and viscometric behavior of glycine and DL-alanine in aqueous furosemide solutions at different temperatures, J. Mol. Liq. 212(2015) 656-664.[38] H. Kumar, K. Kaur, Investigation on molecular interaction of amino acids in antibacterial drug ampicillin solutions with reference to volumetric and compressibility measurements, J. Mol. Liq. 173(2012) 130-136.[39] D.D. Miller, W. Lenhart, B.J. Williams, J.H. Hewitt, The use of NMR to study sodium dodecyl sulfate-gelatin interactions, Langmuir 10(1994) 68-71.[40] K. Sharma, S. Chauhan, Apparent molar volume, compressibility and viscometric studies of sodium dodecyl benzene sulfonate (SDBS) and dodecyltrimethylammonium bromide (DTAB) in aqueous amino acid solutions:a thermo-acoustic approach, Thermochim. Acta 578(2014) 15-27.[41] D. Kaushal, D.S. Rana, S. Chauhan, Effect of furosemide on denaturation of lysozyme in the presence of ionic surfactant at different temperatures, Fluid Phase Equilib. 360(2013) 239-247.[42] V.K. Syal, A. Chauhan, S. Chauhan, Ultrasonic velocity, viscosity and density studies of poly (ethylene glycols) (PEG-8,000, PEG-20,000) in acetonitrile (AN) and water (H2O) mixtures at 250C, J. Pure Appl. Ultrason. 27(2005) 61-69.[43] S. Chauhan, P. Chaudhary, K. Sharma, K. Kumar Kiran, Temperature-dependent volumetric and viscometric properties of amino acids in aqueous solutions of an antibiotic drug, Chem. Pap. 67(2013) 1442-1452.[44] R. Kameswari, G. Giridhar, M. Rangacharyulu, Density and ultrasonic studies on sunflower oil, IJESAT 5(2015) 465-473.[45] S. Thirumaran, Deepesh George, Ultrasonic study of intermolecular association through hydrogen bonding in ternary liquid mixtures, ARPN J. Eng. Appl. Sci. 4(2009) 1-11.[46] A.B. Naik, Densities, viscosities, speed of sound and some acoustical parameter studies of substituted pyrazoline compounds at different temperatures, Indian J. Pure Appl. Phys. 53(2015) 27-34.[47] R. Kumar, R. Mahesh, B. Shanmugapriyan, V. Kannappan, Volumetric, viscometric, acoustic and refractometric studies of molecular interactions in certain binary systems of o-chlorophenol at 303.15 K, Indian J. Pure Appl. Phys. 50(2012) 633-640. |
[1] | Farzaneh Rezaei, Saeed Jafari, Abdolhossein Hemmati-Sarapardeh, Amir H. Mohammadi. Modeling viscosity of methane, nitrogen, and hydrocarbon gas mixtures at ultra-high pressures and temperatures using group method of data handling and gene expression programming techniques [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 431-445. |
[2] | Luchao Jin, Yongming He, Guobing Zhou, Qiuhao Chang, Liangliang Huang, Xingru Wu. Natural gas density under extremely high pressure and high temperature: Comparison of molecular dynamics simulation with corresponding state model [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 2-9. |
[3] | Changjie Lu, Weiqiang Tang, Zijiang Dou, Peng Xie, Xiaofei Xu, Shuangliang Zhao. A reaction density functional theory study of solvent effects on keto-enol tautomerism and isomerization in pyruvic acid [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 10-16. |
[4] | Jie Yang, Alejandro Gallegos, Cheng Lian, Shengwei Deng, Honglai Liu, Jianzhong Wu. Curvature effects on electric-double-layer capacitance [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 145-152. |
[5] | Sobhan Farahani, Mohammad Amin Sobati. A novel method for the management of sulfone-rich waste produced in the oxidative desulfurization (ODS) process [J]. Chinese Journal of Chemical Engineering, 2020, 28(9): 2447-2456. |
[6] | Xinyu Wang, Xinghua Qin, Qiongqiong Lu, Mingming Han, Ahmad Omar, Daria Mikhailova. Mixed phase sodium manganese oxide as cathode for enhanced aqueous zinc-ion storage [J]. Chinese Journal of Chemical Engineering, 2020, 28(8): 2214-2220. |
[7] | Xin Zheng, Shuai Ban, Bei Liu, Guangjin Chen. Strain-controlled graphdiyne membrane for CO2/CH4 separation: Firstprinciple and molecular dynamic simulation [J]. Chinese Journal of Chemical Engineering, 2020, 28(7): 1898-1903. |
[8] | Haifeng Yu, Zhaofeng Yang, Huawei Zhu, Hao Jiang, Chunzhong Li. Nitrogen-doped carbon stabilized LiFe0.5Mn0.5PO4/rGO cathode materials for high-power Li-ion batteries [J]. Chinese Journal of Chemical Engineering, 2020, 28(7): 1935-1940. |
[9] | Pakpoom Supachart, Thanit Swasdisevi, Pratarn Wongsarivej, Mana Amornkitbamrung, Naris Pratinthong. Development of separation sharpness model for hydrocyclone [J]. Chinese Journal of Chemical Engineering, 2020, 28(3): 785-792. |
[10] | Ling Yang, Wei Zhou, Hao Li, Ali Alsalme, Litao Jia, Jiangfeng Yang, Jinping Li, Libo Li, Banglin Chen. Reversed ethane/ethylene adsorption in a metal-organic framework via introduction of oxygen [J]. Chinese Journal of Chemical Engineering, 2020, 28(2): 593-597. |
[11] | Ankita, Dinesh Chand, Anil Kumar Nain. Insight into solute-solute and solute-solvent interactions of semicarbazide hydrochloride in water and D-glucose/D-sucrose+water solutions at temperatures (293.15 to 318.15) K [J]. Chinese Journal of Chemical Engineering, 2020, 28(12): 3086-3095. |
[12] | Feng Wang, Min Yao, Haoyong Kan, Jianping Kuang, Ping Li, Jiashuo Zhang, Yixin Zhang. Effect of Al2O3/CaO on the melting and mineral transformation of Ningdong coal ash [J]. Chinese Journal of Chemical Engineering, 2020, 28(12): 3110-3116. |
[13] | Xin Dai, Jin Bai, Ping Yuan, Shiyu Du, Dongtao Li, Xiaodong Wen, Wen Li. The application of molecular simulation in ash chemistry of coal [J]. Chinese Journal of Chemical Engineering, 2020, 28(11): 2723-2732. |
[14] | Khatereh Ali Pishro, Ghulam Murshid, Farouq Sabri Mjalli, Jamil Naser. Investigation of CO2 solubility in monoethanolamine hydrochloride based deep eutectic solvents and physical properties measurements [J]. Chinese Journal of Chemical Engineering, 2020, 28(11): 2848-2856. |
[15] | Seyed Mohammad Ali Najafi, Pouria Mikaniki, Hojat Ghassemi. Microscopic and macroscopic atomization characteristics of a pressure-swirl atomizer, injecting a viscous fuel oil [J]. Chinese Journal of Chemical Engineering, 2020, 28(1): 9-22. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||