中国化学工程学报 ›› 2022, Vol. 49 ›› Issue (9): 76-99.DOI: 10.1016/j.cjche.2022.06.017
• Special Column: Membranes for Life Science • 上一篇 下一篇
Kai Zhang, Huan-Huan Wu, Hui-Qian Huo, Yan-Li Ji, Yong Zhou, Cong-Jie Gao
收稿日期:
2022-02-23
修回日期:
2022-06-13
出版日期:
2022-09-28
发布日期:
2022-10-19
通讯作者:
Yan-Li Ji,E-mail:yanliji@zjut.edu.cn
基金资助:
Kai Zhang, Huan-Huan Wu, Hui-Qian Huo, Yan-Li Ji, Yong Zhou, Cong-Jie Gao
Received:
2022-02-23
Revised:
2022-06-13
Online:
2022-09-28
Published:
2022-10-19
Contact:
Yan-Li Ji,E-mail:yanliji@zjut.edu.cn
Supported by:
摘要: In the face of human society's great requirements for health industry, and the much stricter safety and quality standards in the biomedical industry, the demand for advanced membrane separation technologies continues to rapidly grow in the world. Nanofiltration (NF) and reverse osmosis (RO) as the high-efficient, low energy consumption, and environmental friendly membrane separation techniques, show great promise in the application of biomedical separation field. The chemical compositions, microstructures and surface properties of NF/RO membranes determine the separation accuracy, efficiency and operation cost in their applications. Accordingly, recent studies have focused on tuning the structures and tailoring the performance of NF/RO membranes via the design and synthesis of various advanced membrane materials, and exploring universal and convenient membrane preparation strategies, with the objective of promoting the better and faster development of NF/RO membrane separation technology in the biomedical separation field. This paper reviews the recent studies on the NF/RO membranes constructed with various materials, including the polymeric materials, different dimensional inorganic/organic nanomaterials, porous polymeric materials and metal coordination polymers, etc. Moreover, the influence of membrane chemical compositions, interior microstructures, and surface characteristics on the separation performance of NF/RO membranes, are comprehensively discussed. Subsequently, the applications of NF/RO membranes in biomedical separation field are systematically reported. Finally, the perspective for future challenges of NF/RO membrane separation techniques in this field is discussed.
Kai Zhang, Huan-Huan Wu, Hui-Qian Huo, Yan-Li Ji, Yong Zhou, Cong-Jie Gao. Recent advances in nanofiltration, reverse osmosis membranes and their applications in biomedical separation field[J]. 中国化学工程学报, 2022, 49(9): 76-99.
Kai Zhang, Huan-Huan Wu, Hui-Qian Huo, Yan-Li Ji, Yong Zhou, Cong-Jie Gao. Recent advances in nanofiltration, reverse osmosis membranes and their applications in biomedical separation field[J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 76-99.
[1] T.S. Danaher, A.S. Gallan, Service research in health care, J. Serv. Res. 19 (4) (2016) 433-437 [2] Y. Xu, T.J. Liu, Y. Zhang, F. Ge, R.M. Steel, L.Y. Sun, Advances in technologies for pharmaceuticals and personal care products removal, J. Mater. Chem. A 5 (24) (2017) 12001-12014 [3] S. Liu, L.Z. Yi, Y.Z. Liang, Traditional Chinese medicine and separation science, J. Sep. Sci. 31 (11) (2008) 2113-2137 [4] W.M. Chen, Z.P. Gu, G. Ran, Q.B. Li, Application of membrane separation technology in the treatment of leachate in China:A review, Waste Manag. 121 (2021) 127-140 [5] Y. Yang, Y.S. Ok, K.H. Kim, E.E. Kwon, Y.F. Tsang, Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants:A review, Sci. Total Environ. 596-597 (2017) 303-320 [6] R.J. Petersen, Composite reverse osmosis and nanofiltration membranes, J. Membr. Sci. 83 (1) (1993) 81-150 [7] R.W. Baker, Membrane Technology and Applications., John Wiley & Sons, Chichester, 2012 [8] J. Hoslett, T.M. Massara, S. Malamis, D. Ahmad, I. van den Boogaert, E. Katsou, B. Ahmad, H. Ghazal, S. Simons, L. Wrobel, H. Jouhara, Surface water filtration using granular media and membranes:A review, Sci. Total. Environ. 639 (2018) 1268-1282 [9] M. Khodakarami, L. Alagha, High-performance polymers for separation and purification processes:An overview, Polym. Plast. Technol. Eng. 56 (18) (2017) 2019-2042 [10] Y.L. Ji, W.J. Qian, Y.W. Yu, Q.F. An, L.F. Liu, Y. Zhou, C.J. Gao, Recent developments in nanofiltration membranes based on nanomaterials, Chin. J. Chem. Eng. 25 (11) (2017) 1639-1652 [11] Z.P. Liao, J.Y. Zhu, X. Li, B. van der Bruggen, Regulating composition and structure of nanofillers in thin film nanocomposite (TFN) membranes for enhanced separation performance:A critical review, Sep. Purif. Technol. 266 (2021) 118567 [12] H.R. Zhang, Q.M. He, J.Q. Luo, Y.H. Wan, S.B. Darling, Sharpening nanofiltration:Strategies for enhanced membrane selectivity, ACS Appl. Mater. Interfaces 12 (36) (2020) 39948-39966 [13] B. Wang, M.L. Sheng, J.Y. Xu, S. Zhao, J.X. Wang, Z. Wang, Recent advances of gas transport channels constructed with different dimensional nanomaterials in mixed-matrix membranes for CO 2 separation, Small Methods 4 (3) (2020) 1900749 [14] Z.Y. Wang, S.M. Liang, Y. Kang, W. Zhao, Y. Xia, J.D. Yang, H.T. Wang, X.W. Zhang, Manipulating interfacial polymerization for polymeric nanofilms of composite separation membranes, Prog. Polym. Sci. 122 (2021) 101450 [15] N. Zhang, X.J. Song, H.Q. Jiang, C.Y. Tang, Advanced thin-film nanocomposite membranes embedded with organic-based nanomaterials for water and organic solvent purification:A review, Sep. Purif. Technol. 269 (2021) 118719 [16] J. Dechnik, J. Gascon, C.J. Doonan, C. Janiak, C.J. Sumby, Mixed-matrix membranes, Angew. Chem. Int. Ed. 56 (32) (2017) 9292-9310 [17] Z. Zhang, L.P. Wen, L. Jiang, Bioinspired smart asymmetric nanochannel membranes, Chem. Soc. Rev. 47 (2) (2018) 322-356 [18] X.Q. Wang, N.X. Wang, X.T. Li, Q.F. An, A review of nano-confined composite membranes fabricated inside the porous support, Adv. Membr. 1 (2021) 100005 [19] Y.L. Ji, M.J. Yin, Q.F. An, C.J. Gao, Recent developments in polymeric nano-based separation membranes, Fundam. Res. 2 (2) (2022) 254-267 [20] Y. Cao, G.Q. Chen, Y.H. Wan, J.Q. Luo, Nanofiltration membrane for bio-separation:Process-oriented materials innovation, Eng. Life Sci. 21 (6) (2021) 405-416 [21] H.J. Wang, M.D. Wang, X. Liang, J.Q. Yuan, H. Yang, S.Y. Wang, Y.X. Ren, H. Wu, F.S. Pan, Z.Y. Jiang, Organic molecular sieve membranes for chemical separations, Chem. Soc. Rev. 50 (9) (2021) 5468-5516 [22] P. Marchetti, L. Peeva, A. Livingston, The selectivity challenge in organic solvent nanofiltration:Membrane and process solutions, Annu. Rev. Chem. Biomol. Eng. 8 (2017) 473-497 [23] Li X, Tan S, Luo J, Pinelo M, Nanofiltration for separation and purification of saccharides from biomass, Front. Chem. Sci. Eng. 15 (2021) 837-853 [24] A.M. Pandele, H. Iovu, C. Orbeci, C. Tuncel, F. Miculescu, A. Nicolescu, C. Deleanu, S.I. Voicu, Surface modified cellulose acetate membranes for the reactive retention of tetracycline, Sep. Purif. Technol. 249 (2020) 117145 [25] D. Li, Y.S. Yan, H.T. Wang, Recent advances in polymer and polymer composite membranes for reverse and forward osmosis processes, Prog. Polym. Sci. 61 (2016) 104-155 [26] T. Gotoh, H. Iguchi, K.I. Kikuchi, Separation of glutathione and its related amino acids by nanofiltration, Biochem. Eng. J. 19 (2) (2004) 165-170 [27] R. Derakhsheshpoor, M. Homayoonfal, A. Akbari, M.R. Mehrnia, Amoxicillin separation from pharmaceutical wastewater by high permeability polysulfone nanofiltration membrane, J. Environ. Heal. Sci. Eng. 11 (2013) 9 [28] E. Salimi, A. Ghaee, A.F. Ismail, Β-Cyclodextrin modified PES hollow fiber membrane, a new strategy for bilirubin separation, Mater. Lett. 215 (2018) 276-279 [29] M. Omidvar, Z. Hejri, A. Moarefian, Correction to:The effect of Merpol surfactant on the morphology and performance of PES/PVP membranes:Antibiotic separation, Int. J. Ind. Chem. 11 (1) (2020) 69 [30] Z.L. Cui, E. Drioli, Y.M. Lee, Recent progress in fluoropolymers for membranes, Prog. Polym. Sci. 39 (1) (2014) 164-198 [31] P. Marchetti, M.F. Jimenez Solomon, G. Szekely, A.G. Livingston, Molecular separation with organic solvent nanofiltration:A critical review, Chem. Rev. 114 (21) (2014) 10735-10806 [32] B.F. Li, Y. Cui, T.S. Chung, Hydrophobic perfluoropolyether-coated thin-film composite membranes for organic solvent nanofiltration, ACS Appl. Polym. Mater. 1 (3) (2019) 472-481 [33] F. Alduraiei, P. Manchanda, B. Pulido, G. Szekely, S.P. Nunes, Fluorinated thin-film composite membranes for nonpolar organic solvent nanofiltration, Sep. Purif. Technol. 279 (2021) 119777 [34] N.C. Bing, Z.L. Xu, X.J. Wang, Z.G. Yang, H. Yang, Recognition properties of poly(vinylidene fluoride) hollow-fiber membranes modified by levofloxacin-imprinted polymers, J. Appl. Polym. Sci. 106 (1) (2007) 71-76 [35] Z.Y. Wang, R. Feng, W.J. Wang, Y.X. Sun, S.N. Tao, Y.M. Wang, Y.F. Chen, Z.J. Fu, X.L. Cao, S.P. Sun, W.H. Xing, Robust braid reinforced hollow fiber membranes for organic solvent nanofiltration (OSN), Adv. Membr. 1 (2021) 100007 [36] M.Q. Seah, W.J. Lau, P.S. Goh, H.H. Tseng, R.A. Wahab, A.F. Ismail, Progress of interfacial polymerization techniques for polyamide thin film (nano)composite membrane fabrication:A comprehensive review, Polymers 12 (12) (2020) 2817 [37] K. Košutić, D. Dolar, D. Ašperger, B. Kunst, Removal of antibiotics from a model wastewater by RO/NF membranes, Sep. Purif. Technol. 53 (3) (2007) 244-249 [38] T.S. Yang, K.Y. Wang, T.S. Chung, Fabrication of thin-film composite hollow fiber membranes in modules for concentrating pharmaceuticals and separating sulphate from high salinity brine in the chlor-alkali process, J. Membr. Sci. 640 (2021) 119822 [39] L.D. Nghiem, S. Hawkes, Effects of membrane fouling on the nanofiltration of pharmaceutically active compounds (PhACs):Mechanisms and role of membrane pore size, Sep. Purif. Technol. 57 (1) (2007) 176-184 [40] S.W. Guo, X.R. Chen, Y.H. Wan, S.C. Feng, J.Q. Luo, Custom-tailoring loose nanofiltration membrane for precise biomolecule fractionation:New insight into post-treatment mechanisms, ACS Appl. Mater. Interfaces 12 (11) (2020) 13327-13337 [41] X.D. Weng, Y.L. Ji, R. Ma, F.Y. Zhao, Q.F. An, C.J. Gao, Superhydrophilic and antibacterial zwitterionic polyamide nanofiltration membranes for antibiotics separation, J. Membr. Sci. 510 (2016) 122-130 [42] Q. Wu, J. Gao, L.X. Chen, S.Q. Dong, H. Li, H.D. Qiu, L. Zhao, Graphene quantum dots functionalized β-cyclodextrin and cellulose chiral stationary phases with enhanced enantioseparation performance, J. Chromatogr. A 1600 (2019) 209-218 [43] H.W. Peng, W.H. Zhang, W.S. Hung, N.X. Wang, J. Sun, K.R. Lee, Q.F. An, C.M. Liu, Q. Zhao, Phosphonium modification leads to ultrapermeable antibacterial polyamide composite membranes with unreduced thickness, Adv. Mater. 32 (23) (2020) 2001383 [44] B.B. Vyas, P. Ray, Preparation of nanofiltration membranes and relating surface chemistry with potential and topography:Application in separation and desalting of amino acids, Desalination 362 (2015) 104-116 [45] Y.S. Guo, Y.L. Ji, B. Wu, N.X. Wang, M.J. Yin, Q.F. An, C.J. Gao, High-flux zwitterionic nanofiltration membrane constructed by in situ introduction method for monovalent salt/antibiotics separation, J. Membr. Sci. 593 (2020) 117441 [46] Y.L. Ji, B.X. Gu, Q.F. An, C.J. Gao, Recent advances in the fabrication of membranes containing "ion pairs" for nanofiltration processes, Polymers 9 (12) (2017) 715 [47] Z.Z. Zhou, Y.C. Xiao, T.A. Hatton, T.S. Chung, Effects of spacer arm length and benzoation on enantioseparation performance of β-cyclodextrin functionalized cellulose membranes, J. Membr. Sci. 339 (1-2) (2009) 21-27 [48] J. Ke, Y. Zhang, X.Y. Zhang, Y.H. Liu, Y.B. Ji, J.Q. Chen, Novel chiral composite membrane prepared via the interfacial polymerization of diethylamino-beta-cyclodextrin for the enantioseparation of chiral drugs, J. Membr. Sci. 597 (2020) 117635 [49] J. Ke, K. Yang, X.P. Bai, H. Luo, Y.B. Ji, J.Q. Chen, A novel chiral polyester composite membrane:Preparation, enantioseparation of chiral drugs and molecular modeling evaluation, Sep. Purif. Technol. 255 (2021) 117717 [50] E.N. Durmaz, S. Sahin, E. Virga, S. de Beer, L.C.P.M. de Smet, W.M. de Vos, Polyelectrolytes as building blocks for next-generation membranes with advanced functionalities, ACS Appl. Polym. Mater. 3 (9) (2021) 4347-4374 [51] G. Decher, Fuzzy nanoassemblies:Toward layered polymeric multicomposites, Science 277 (5330) (1997) 1232-1237 [52] X.Q. Cheng, Z.X. Wang, Y.Q. Zhang, Y.J. Zhang, J. Ma, L. Shao, Bio-inspired loose nanofiltration membranes with optimized separation performance for antibiotics removals, J. Membr. Sci. 554 (2018) 385-394 [53] L. Tan, L. Gong, S.Y. Wang, Y.Z. Zhu, F. Zhang, Y.T. Zhang, J. Jin, Superhydrophilic sub-1-nm porous membrane with electroneutral surface for nonselective transport of small organic molecules, ACS Appl. Mater. Interfaces 12 (34) (2020) 38778-38787 [54] S.U. Hong, M.D. Miller, M.L. Bruening, Removal of dyes, sugars, and amino acids from NaCl solutions using multilayer polyelectrolyte nanofiltration membranes, Ind. Eng. Chem. Res. 45 (18) (2006) 6284-6288 [55] S.U. Hong, M.L. Bruening, Separation of amino acid mixtures using multilayer polyelectrolyte nanofiltration membranes, J. Membr. Sci. 280 (1-2) (2006) 1-5 [56] H.H. Rmaile, J.B. Schlenoff, Optically active polyelectrolyte multilayers as membranes for chiral separations, J. Am. Chem. Soc. 125 (22) (2003) 6602-6603 [57] S.M. Abtahi, S. Ilyas, C. Joannis Cassan, C. Albasi, W.M. de Vos, Micropollutants removal from secondary-treated municipal wastewater using weak polyelectrolyte multilayer based nanofiltration membranes, J. Membr. Sci. 548 (2018) 654-666 [58] Z.Y. Ouyang, Z.H. Huang, X.Y. Tang, C.H. Xiong, M.D. Tang, Y.T. Lu, A dually charged nanofiltration membrane by pH-responsive polydopamine for pharmaceuticals and personal care products removal, Sep. Purif. Technol. 211 (2019) 90-97 [59] S.P. Sun, T.A. Hatton, T.S. Chung, Hyperbranched polyethyleneimine induced cross-linking of polyamide-imide nanofiltration hollow fiber membranes for effective removal of ciprofloxacin, Environ. Sci. Technol. 45 (9) (2011) 4003-4009 [60] S.S. Zhao, C.Y. Ba, Y.X. Yao, W.H. Zheng, J. Economy, P. Wang, Removal of antibiotics using polyethylenimine cross-linked nanofiltration membranes:Relating membrane performance to surface charge characteristics, Chem. Eng. J. 335 (2018) 101-109 [61] M. Homayoonfal, M.R. Mehrnia, Amoxicillin separation from pharmaceutical solution by pH sensitive nanofiltration membranes, Sep. Purif. Technol. 130 (2014) 74-83 [62] B.H. Jeong, E.M.V. Hoek, Y.S. Yan, A. Subramani, X.F. Huang, G. Hurwitz, A.K. Ghosh, A. Jawor, Interfacial polymerization of thin film nanocomposites:A new concept for reverse osmosis membranes, J. Membr. Sci. 294 (1-2) (2007) 1-7 [63] H. Mahdavi, R. Bagherifar, Cellulose acetate/SiO2-poly(2-Acrylamido-2-methylpropane sulfonic acid) hybrid nanofiltration membrane:Application in removal of ceftriaxone sodium, J. Iran. Chem. Soc. 15 (12) (2018) 2839-2849 [64] X. Li, A. Sotto, J.S. Li, B. van der Bruggen, Progress and perspectives for synthesis of sustainable antifouling composite membranes containing in situ generated nanoparticles, J. Membr. Sci. 524 (2017) 502-528 [65] A.M.A. Abdelsamad, M. Matthias, A.S.G. Khalil, M. Ulbricht, Nanofillers dissolution as a crucial challenge for the performance stability of thin-film nanocomposite desalination membranes, Sep. Purif. Technol. 228 (2019) 115767 [66] Z. Yang, H. Guo, Z.K. Yao, Y. Mei, C.Y. Tang, Hydrophilic silver nanoparticles induce selective nanochannels in thin film nanocomposite polyamide membranes, Environ. Sci. Technol. 53 (9) (2019) 5301-5308 [67] Y.F. Song, Y.X. Wang, N. Zhang, X.F. Li, X.S. Bai, T.M. Li, Quaternized carbon-based nanoparticles embedded positively charged composite membranes towards efficient removal of cationic small-sized contaminants, J. Membr. Sci. 630 (2021) 119332 [68] Y.R. He, Y.P. Tang, T.S. Chung, Concurrent removal of selenium and arsenic from water using polyhedral oligomeric silsesquioxane (POSS)-polyamide thin-film nanocomposite nanofiltration membranes, Ind. Eng. Chem. Res. 55 (50) (2016) 12929-12938 [69] X.D. You, T.Y. Ma, Y.L. Su, H. Wu, M.Y. Wu, H.W. Cai, G.M. Sun, Z.Y. Jiang, Enhancing the permeation flux and antifouling performance of polyamide nanofiltration membrane by incorporation of PEG-POSS nanoparticles, J. Membr. Sci. 540 (2017) 454-463 [70] Y.J. Shen, Q.R. Kong, L.F. Fang, Z.L. Qiu, B.K. Zhu, Construction of covalently-bonded tannic acid/polyhedral oligomeric silsesquioxanes nanochannel layer for antibiotics/salt separation, J. Membr. Sci. 623 (2021) 119044 [71] A. Colburn, N. Wanninayake, D.Y. Kim, D. Bhattacharyya, Cellulose-graphene quantum dot composite membranes using ionic liquid, J. Membr. Sci. 556 (2018) 293-302 [72] M.H. Davood Abadi Farahani, D. Hua, T.S. Chung, Cross-linked mixed matrix membranes (MMMs) consisting of amine-functionalized multi-walled carbon nanotubes and P84 polyimide for organic solvent nanofiltration (OSN) with enhanced flux, J. Membr. Sci. 548 (2018) 319-331 [73] M.H. Davood Abadi Farahani, T.S. Chung, Solvent resistant hollow fiber membranes comprising P84 polyimide and amine-functionalized carbon nanotubes with potential applications in pharmaceutical, food, and petrochemical industries, Chem. Eng. J. 345 (2018) 174-185 [74] L.H. Xu, J.S. He, Y. Yu, J.P. Chen, Effect of CNT content on physicochemical properties and performance of CNT composite polysulfone membranes, Chem. Eng. Res. Des. 121 (2017) 92-98 [75] H. Lee, S.M. Dellatore, W.M. Miller, P.B. Messersmith, Mussel-inspired surface chemistry for multifunctional coatings, Science 318 (5849) (2007) 426-430 [76] F.Y. Zhao, Y.L. Ji, X.D. Weng, Y.F. Mi, C.C. Ye, Q.F. An, C.J. Gao, High-flux positively charged nanocomposite nanofiltration membranes filled with poly(dopamine) modified multiwall carbon nanotubes, ACS Appl. Mater. Interfaces 8 (10) (2016) 6693-6700 [77] F.S. Pan, H.J. Wang, W.D. Li, S.B. Zhang, J. Sun, H. Yang, M.D. Wang, M.R. Wang, X.D. Zhou, X. Liu, Z.Y. Jiang, Constructing rapid diffusion pathways in ultrapermeable hybrid membranes by hierarchical porous nanotubes, Chem. Eng. Sci. 195 (2019) 609-618 [78] H.Y. Zhao, Z.J. Zhou, H. Dong, L. Zhang, H.L. Chen, L. Hou, A facile method to align carbon nanotubes on polymeric membrane substrate, Sci. Rep. 3 (2013) 3480 [79] V.S. Babu, M. Padaki, L.P. D'Souza, S. Déon, R.G. Balakrishna, A.F. Ismail, Effect of hydraulic coefficient on membrane performance for rejection of emerging contaminants, Chem. Eng. J. 334 (2018) 2392-2400 [80] M. Terrones, N. Grobert, J. Olivares, J.P. Zhang, H. Terrones, K. Kordatos, W.K. Hsu, J.P. Hare, P.D. Townsend, K. Prassides, A.K. Cheetham, H.W. Kroto, D.R.M. Walton, Controlled production of aligned-nanotube bundles, Nature 388 (6637) (1997) 52-55 [81] B. Lee, Y. Baek, M. Lee, D.H. Jeong, H.H. Lee, J. Yoon, Y.H. Kim, A carbon nanotube wall membrane for water treatment, Nat. Commun. 6 (2015) 7109 [82] M.K. Liu, Y.Y. Liu, D.D. Bao, G. Zhu, G.H. Yang, J.F. Geng, H.T. Li, Effective removal of tetracycline antibiotics from water using hybrid carbon membranes, Sci. Rep. 7 (2017) 43717 [83] W.H. Zhang, M.J. Yin, Q. Zhao, C.G. Jin, N.X. Wang, S.L. Ji, C.L. Ritt, M. Elimelech, Q.F. An, Graphene oxide membranes with stable porous structure for ultrafast water transport, Nat. Nanotechnol. 16 (3) (2021) 337-343 [84] S. Bano, A. Mahmood, S.J. Kim, K.H. Lee, Graphene oxide modified polyamide nanofiltration membrane with improved flux and antifouling properties, J. Mater. Chem. A 3 (5) (2015) 2065-2071 [85] J. Wang, N.N. Li, Y. Zhao, S.J. Xia, Graphene oxide modified semi-aromatic polyamide thin film composite membranes for PPCPs removal, Desalin. Water Treat. 66 (2017) 166-175 [86] P.C. Su, M.M. Jia, J.P. Huang, W.B. Li, C.Y. Tang, Multilayer assembly of thin-film nanocomposite membranes with enhanced NaCl and antibiotic rejection, Desalination 517 (2021) 115261 [87] G.P. Liu, W.Q. Jin, N.P. Xu, Graphene-based membranes, Chem. Soc. Rev. 44 (15) (2015) 5016-5030 [88] F. Medhat Bojnourd, M. Pakizeh, Preparation and characterization of a nanoclay/PVA/PSf nanocomposite membrane for removal of pharmaceuticals from water, Appl. Clay Sci. 162 (2018) 326-338 [89] M. Bassyouni, M.H. Abdel-Aziz, M.S. Zoromba, S.M.S. Abdel-Hamid, E. Drioli, A review of polymeric nanocomposite membranes for water purification, J. Ind. Eng. Chem. 73 (2019) 19-46 [90] Y.D. Cheng, Y.P. Ying, S. Japip, S.D. Jiang, T.S. Chung, S. Zhang, D. Zhao, Membrane technology:Advanced porous materials in mixed matrix membranes (adv. mater. 47/2018), Adv. Mater. 30 (47) (2018) 1870355 [91] X.Q. Li, L. Ma, H.Y. Zhang, S.F. Wang, Z.Y. Jiang, R.L. Guo, H. Wu, X.Z. Cao, J. Yang, B.Y. Wang, Synergistic effect of combining carbon nanotubes and graphene oxide in mixed matrix membranes for efficient CO2 separation, J. Membr. Sci. 479 (2015) 1-10 [92] Q. Liu, L. Li, X. Jin, C.L. Wang, T.H. Wang, Influence of graphene oxide sheets on the pore structure and filtration performance of a novel graphene oxide/silica/polyacrylonitrile mixed matrix membrane, J. Mater. Sci. 53 (9) (2018) 6505-6518 [93] A. Modi, J. Bellare, Amoxicillin removal using polyethersulfone hollow fiber membranes blended with ZIF-L nanoflakes and cGO nanosheets:Improved flux and fouling-resistance, J. Environ. Chem. Eng. 8 (4) (2020) 103973 [94] L. Qiu, X.H. Zhang, W.R. Yang, Y.F. Wang, G.P. Simon, D. Li, Controllable corrugation of chemically converted graphene sheets in water and potential application for nanofiltration, Chem. Commun. 47 (20) (2011) 5810 [95] Y. Han, Z. Xu, C. Gao, Ultrathin graphene nanofiltration membrane for water purification, Adv. Funct. Mater. 23 (29) (2013) 3693-3700 [96] W.S. Hung, C.H. Tsou, M. de Guzman, Q.F. An, Y.L. Liu, Y.M. Zhang, C.C. Hu, K.R. Lee, J.Y. Lai, Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-spacing, Chem. Mater. 26 (9) (2014) 2983-2990 [97] T.T. Gao, L. Huang, C. Li, G.C. Xu, G.Q. Shi, Graphene membranes with tuneable nanochannels by intercalating self-assembled porphyrin molecules for organic solvent nanofiltration, Carbon 124 (2017) 263-270 [98] S.X. Zheng, B.X. Mi, Emerging investigators series:Silica-crosslinked graphene oxide membrane and its unique capability in removing neutral organic molecules from water, Environ. Sci.:Water Res. Technol. 2 (4) (2016) 717-725 [99] B.Q. Yuan, M.X. Wang, B. Wang, F.L. Yang, X. Quan, C.Y. Tang, Y.C. Dong, Cross-linked graphene oxide framework membranes with robust nano-channels for enhanced sieving ability, Environ. Sci. Technol. 54 (23) (2020) 15442-15453 [100] C.C. Meng, Q.B. Chen, H.L. Tan, Y.J. Sheng, H.L. Liu, Role of filled PLGA in improving enantioselectivity of Glu-GO/PLGA composite membranes, J. Membr. Sci. 555 (2018) 398-406 [101] C.C. Meng, Q.B. Chen, X.X. Li, H.L. Liu, Controlling covalent functionalization of graphene oxide membranes to improve enantioseparation performances, J. Membr. Sci. 582 (2019) 83-90 [102] X.X. Li, Q.B. Chen, X.F. Tong, S.Z. Zhang, H.L. Liu, Chiral separation of β-cyclodextrin modified graphene oxide membranes with a complete enantioseparation performance, J. Membr. Sci. 634 (2021) 119350 [103] G.H. Yang, D.D. Bao, D.Q. Zhang, C. Wang, L.L. Qu, H.T. Li, Removal of antibiotics from water with an all-carbon 3D nanofiltration membrane, Nanoscale Res. Lett. 13 (2018) 146 [104] H.P. Gao, Y.G. Wang, M.A. Afolabi, D.Q. Xiao, Y.S. Chen, Incorporation of cellulose nanocrystals into graphene oxide membranes for efficient antibiotic removal at high nutrient recovery, ACS Appl. Mater. Interfaces 13 (12) (2021) 14102-14111 [105] L. Ding, Y.Y. Wei, L.B. Li, T. Zhang, H.H. Wang, J. Xue, L.X. Ding, S.Q. Wang, J. Caro, Y. Gogotsi, MXene molecular sieving membranes for highly efficient gas separation, Nat. Commun. 9 (1) (2018) 155 [106] R.P. Pandey, K. Rasool, V.E. Madhavan, B. Aïssa, Y. Gogotsi, K.A. Mahmoud, Ultrahigh-flux and fouling-resistant membranes based on layered silver/MXene (Ti3C2Tx) nanosheets, J. Mater. Chem. A 6 (8) (2018) 3522-3533 [107] L. Ding, Y.Y. Wei, Y.J. Wang, H.B. Chen, J. Caro, H.H. Wang, A two-dimensional lamellar membrane:Mxene nanosheet stacks, Angew. Chem. Int. Ed Engl. 56 (7) (2017) 1825-1829 [108] K.M. Kang, D.W. Kim, C.E. Ren, K.M. Cho, S.J. Kim, J.H. Choi, Y.T. Nam, Y. Gogotsi, H.T. Jung, Selective molecular separation on Ti3C2Tx-graphene oxide membranes during pressure-driven filtration:Comparison with graphene oxide and Mxenes, ACS Appl. Mater. Interfaces 9 (51) (2017) 44687-44694 [109] Y.Q. Sun, Z. Xu, Y.X. Zhuang, G.Z. Liu, W.Q. Jin, G.P. Liu, W.H. Jing, Tunable dextran retention of Mxene-TiO 2 mesoporous membranes by adjusting the 2D MXene content, 2D Mater. 5 (4) (2018) 045003 [110] Z. Xu, Y.Q. Sun, Y.X. Zhuang, W.H. Jing, H. Ye, Z.F. Cui, Assembly of 2D Mxene nanosheets and TiO2 nanoparticles for fabricating mesoporous TiO2-Mxene membranes, J. Membr. Sci. 564 (2018) 35-43 [111] Z.K. Li, Y.Y. Wei, X. Gao, L. Ding, Z. Lu, J.J. Deng, X.F. Yang, J. Caro, H.H. Wang, Antibiotics separation with Mxene membranes based on regularly stacked high-aspect-ratio nanosheets, Angew. Chem. Int. Ed. 59 (24) (2020) 9751-9756 [112] R. Freund, O. Zaremba, G. Arnauts, R. Ameloot, G. Skorupskii, M. Dincă, A. Bavykina, J. Gascon, A. Ejsmont, J. Goscianska, M. Kalmutzki, U. Lächelt, E. Ploetz, C.S. Diercks, S. Wuttke, The current status of MOF and COF applications, Angewandte Chemie Int. Ed. 60 (45) (2021) 23975-24001 [113] H.Z. Dou, M. Xu, B.Y. Wang, Z. Zhang, G.B. Wen, Y. Zheng, D. Luo, L. Zhao, A.P. Yu, L.H. Zhang, Z.Y. Jiang, Z.W. Chen, Microporous framework membranes for precise molecule/ion separations, Chem. Soc. Rev. 50 (2) (2021) 986-1029 [114] J.X. Qin, S.S. Lin, S.Q. Song, L. Zhang, H.L. Chen, 4-dimethylaminopyridine promoted interfacial polymerization between hyperbranched polyesteramide and trimesoyl chloride for preparing ultralow-pressure reverse osmosis composite membrane, ACS Appl. Mater. Interfaces 5 (14) (2013) 6649-6656 [115] Z.L. Qiu, L.F. Fang, Y.J. Shen, W.H. Yu, B.K. Zhu, C. Hélix-Nielsen, W.J. Zhang, Ionic dendrimer based polyamide membranes for ion separation, ACS Nano 15 (4) (2021) 7522-7535 [116] Y.L. Ji, H.H. Lu, B.X. Gu, R.F. Ye, Y. Zhou, Q.F. An, C.J. Gao, Tailoring the asymmetric structure of polyamide reverse osmosis membrane with self-assembled aromatic nanoparticles for high-efficient removal of organic micropollutants, Chem. Eng. J. 416 (2021) 129080 [117] M. Sairam, X.X. Loh, K. Li, A. Bismarck, J.H.G. Steinke, A.G. Livingston, Nanoporous asymmetric polyaniline films for filtration of organic solvents, J. Membr. Sci. 330 (1-2) (2009) 166-174 [118] H.Y. Li, D. Zhai, Y. Zhou, C.J. Gao, Polyamide composite NF membrane modified with polyaniline nanoparticles, CIESC J. 66 (2015) 142-148. (in Chinese) [119] Y.L. Ji, W.J. Qian, Q.F. An, K.R. Lee, C.J. Gao, Polyelectrolyte nanoparticles based thin-film nanocomposite (TFN) membranes for amino acids separation, J. Ind. Eng. Chem. 66 (2018) 209-220 [120] Y.L. Ji, Q.F. An, Y.S. Guo, W.S. Hung, K.R. Lee, C.J. Gao, Bio-inspired fabrication of high perm-selectivity and anti-fouling membranes based on zwitterionic polyelectrolyte nanoparticles, J. Mater. Chem. A 4 (11) (2016) 4224-4231 [121] Y.L. Ji, Q.F. An, X.D. Weng, W.S. Hung, K.R. Lee, C.J. Gao, Microstructure and performance of zwitterionic polymeric nanoparticle/polyamide thin-film nanocomposite membranes for salts/organics separation, J. Membr. Sci. 548 (2018) 559-571 [122] Y.L. Ji, W.J. Qian, Q.F. An, S.H. Huang, K.R. Lee, C.J. Gao, Mussel-inspired zwitterionic dopamine nanoparticles as building blocks for constructing salt selective nanocomposite membranes, J. Membr. Sci. 572 (2019) 140-151 [123] B.X. Gu, Z.Z. Liu, K. Zhang, Y.L. Ji, Y. Zhou, C.J. Gao, Biomimetic asymmetric structural polyamide OSN membranes fabricated via fluorinated polymeric networks regulated interfacial polymerization, J. Membr. Sci. 625 (2021) 119112 [124] W.J. Zhang, B. Aguila, S.Q. Ma, Retracted article:Potential applications of functional porous organic polymer materials, J. Mater. Chem. A 5 (19) (2017) 8795-8824 [125] S.B. Yu, F.R. Lin, J. Tian, J.L. Yu, D.W. Zhang, Z.T. Li, Water-soluble and dispersible porous organic polymers:Preparation, functions and applications, Chem. Soc. Rev. 51 (2) (2022) 434-449 [126] Z.H. Wang, S. Guo, B. Zhang, L.P. Zhu, Hydrophilic polymers of intrinsic microporosity as water transport nanochannels of highly permeable thin-film nanocomposite membranes used for antibiotic desalination, J. Membr. Sci. 592 (2019) 117375 [127] Y.H. Jin, Q.Q. Song, N. Xie, W.G. Zheng, J. Wang, J.Y. Zhu, Y.T. Zhang, Amidoxime-functionalized polymer of intrinsic microporosity (AOPIM-1)-based thin film composite membranes with ultrahigh permeance for organic solvent nanofiltration, J. Membr. Sci. 632 (2021) 119375 [128] J.T. Liu, G. Han, D.L. Zhao, K.J. Lu, J. Gao, T.S. Chung, Self-standing and flexible covalent organic framework (COF) membranes for molecular separation, Sci. Adv. 6 (41) (2020) eabb1110 [129] S. Kandambeth, B.P. Biswal, H.D. Chaudhari, K.C. Rout, S. Kunjattu H, S. Mitra, S. Karak, A. Das, R. Mukherjee, U.K. Kharul, R. Banerjee, Selective molecular sieving in self-standing porous covalent-organic-framework membranes, Adv. Mater. 29 (2) (2017) 1603945 [130] X.L. Weng, J.E. Baez, M. Khiterer, M.Y. Hoe, Z.B. Bao, K.J. Shea, Chiral polymers of intrinsic microporosity:Selective membrane permeation of enantiomers, Angew. Chem. Int. Ed. 54 (38) (2015) 11214-11218 [131] Q.P. Zhang, Z. Wang, Z.W. Zhang, T.L. Zhai, J.J. Chen, H. Ma, B.E. Tan, C. Zhang, Triptycene-based chiral porous polyimides for enantioselective membrane separation, Angew. Chem. Int. Ed. 60 (23) (2021) 12781-12785 [132] Z.H. Li, Y.Y. Liu, S.Y. Zou, C.B. Lu, H. Bai, H.B. Mu, J.Y. Duan, Removal and adsorption mechanism of tetracycline and cefotaxime contaminants in water by NiFe2O4-COF-chitosan-terephthalaldehyde nanocomposites film, Chem. Eng. J. 382 (2020) 123008 [133] C. Yuan, X.W. Wu, R. Gao, X. Han, Y. Liu, Y.T. Long, Y. Cui, Nanochannels of covalent organic frameworks for chiral selective transmembrane transport of amino acids, J. Am. Chem. Soc. 141 (51) (2019) 20187-20197 [134] M. Kalaj, K.C. Bentz, S. Ayala Jr, J.M. Palomba, K.S. Barcus, Y. Katayama, S.M. Cohen, MOF-polymer hybrid materials:From simple composites to tailored architectures, Chem. Rev. 120 (16) (2020) 8267-8302 [135] C. Zhang, B.H. Wu, M.Q. Ma, Z.K. Wang, Z.K. Xu, Ultrathin metal/covalent-organic framework membranes towards ultimate separation, Chem. Soc. Rev. 48 (14) (2019) 3811-3841 [136] S. Sorribas, P. Gorgojo, C. Téllez, J. Coronas, A.G. Livingston, High flux thin film nanocomposite membranes based on metal-organic frameworks for organic solvent nanofiltration, J. Am. Chem. Soc. 135 (40) (2013) 15201-15208 [137] N.X. Wang, T.J. Liu, H.P. Shen, S.L. Ji, J.R. Li, R. Zhang, Ceramic tubular MOF hybrid membrane fabricated through in situ layer-by-layer self-assembly for nanofiltration, AIChE J. 62 (2) (2016) 538-546 [138] Y. Zhao, M.Y. Wu, Y. Guo, N. Mamrol, X. Yang, C.J. Gao, B. van der Bruggen, Metal-organic framework based membranes for selective separation of target ions, J. Membr. Sci. 634 (2021) 119407 [139] J.L. Guo, M.H. Huang, P. Gao, Y.Y. Zhang, H.S. Chen, S.Y. Zheng, T.W. Mu, X.B. Luo, Simultaneous robust removal of tetracycline and tetracycline resistance genes by a novel UiO/TPU/PSF forward osmosis membrane, Chem. Eng. J. 398 (2020) 125604 [140] H. Wang, S. Zhao, Y. Liu, R.X. Yao, X.Q. Wang, Y.H. Cao, D. Ma, M.C. Zou, A.Y. Cao, X. Feng, B. Wang, Membrane adsorbers with ultrahigh metal-organic framework loading for high flux separations, Nat. Commun. 10 (2019) 4204 [141] Y.L. Ji, B.X. Gu, S.J. Xie, M.J. Yin, W.J. Qian, Q. Zhao, W.S. Hung, K.R. Lee, Y. Zhou, Q.F. An, C.J. Gao, Superfast water transport zwitterionic polymeric nanofluidic membrane reinforced by metal-organic frameworks, Adv. Mater. 33 (38) (2021) 2102292 [142] Liu Y, Ban Y, Yang W, Microstructural engineering and architectural design of metal-organic framework membranes, Adv. Mater. 29 (2017) 1606949 [143] S.Y. Fang, P. Zhang, J.L. Gong, L. Tang, G.M. Zeng, B. Song, W.C. Cao, J. Li, J. Ye, Construction of highly water-stable metal-organic framework UiO-66 thin-film composite membrane for dyes and antibiotics separation, Chem. Eng. J. 385 (2020) 123400 [144] T.T. Lu, X.X. Xu, X.X. Liu, T. Sun, Super hydrophilic PVDF based composite membrane for efficient separation of tetracycline, Chem. Eng. J. 308 (2017) 151-159 [145] K. Huang, X.L. Dong, R.F. Ren, W.Q. Jin, Fabrication of homochiral metal-organic framework membrane for enantioseparation of racemic diols, Aiche J. 59 (11) (2013) 4364-4372 [146] Y. Lu, H.C. Zhang, J.Y. Chan, R.W. Ou, H.J. Zhu, M. Forsyth, E.M. Marijanovic, C.M. Doherty, P.J. Marriott, M.M.B. Holl, H.T. Wang, Homochiral MOF-polymer mixed matrix membranes for efficient separation of chiral molecules, Angew. Chem. Int. Ed. 58 (47) (2019) 16928-16935 [147] Y. Lu, J.Y. Chan, H.C. Zhang, X.Y. Li, Y. Nolvachai, P.J. Marriott, X.W. Zhang, G.P. Simon, M.M. Banaszak Holl, H.T. Wang, Cyclodextrin metal-organic framework-polymer composite membranes towards ultimate and stable enantioselectivity, J. Membr. Sci. 620 (2021) 118956 [148] S. Das, S.X. Xu, T. Ben, S.L. Qiu, Chiral recognition and separation by chirality-enriched metal-organic frameworks, Angew. Chem. Int. Ed Engl. 57 (28) (2018) 8629-8633 [149] J.Y. Chan, H. Zhang, Y. Nolvachai, Y. Hu, H. Zhu, M. Forsyth, Q. Gu, D.E. Hoke, X. Zhang, P.J. Marriot, H. Wang, Incorporation of homochirality into a zeolitic imidazolate framework membrane for efficient chiral separation, Angew. Chem. Int. Ed Engl. 57 (52) (2018) 17130-17134 [150] J.L. Wang, S.Z. Wang, Removal of pharmaceuticals and personal care products (PPCPs) from wastewater:A review, J. Environ. Manage. 182 (2016) 620-640 [151] K. Kimura, G. Amy, J.E. Drewes, T. Heberer, T.U. Kim, Y. Watanabe, Rejection of organic micropollutants (disinfection by-products, endocrine disrupting compounds, and pharmaceutically active compounds) by NF/RO membranes, J. Membr. Sci. 227 (1-2) (2003) 113-121 [152] A.I. Schafer, A.G. Fane, T.D. Waite, Nanofiltration-Principles and Applications, Elsevier, Amsterdam, 2005 [153] A. Zhu, S.L. Ji, F. Long, Z. Wu, Y.F Jing. The application of nanofiltration membrane in the concentration and separation of lincomycin wastewater, Environ. Sci. 23 (2002) 39-44 [154] S. Zhang, Y. Yong, Research on the application of the zero discharge of the wastewater from pharmacy production, Ind. Water Trea. 36 (2016) 109-111 [155] X.Y. Wei, Z. Wang, J.X. Wang, S.C. Wang, Membrane fouling and its control in advanced treatment of antibiotic pharmaceutical wastewater with nanofiltration, Membr.Sci. Tech. 29 (2009) 91-97 [156] L. Puijker, M. Mons, Pharmaceuticals and Personal Care Products in the Water Cycle:An international review, Global Water Research Coalition, London, 2004 [157] A.R.D. Verliefde, S.G.J. Heijman, E.R. Cornelissen, G. Amy, B.V. der Bruggen, J.C. van Dijk, Influence of electrostatic interactions on the rejection with NF and assessment of the removal efficiency during NF/GAC treatment of pharmaceutically active compounds in surface water, Water Res. 41 (15) (2007) 3227-3240 [158] M.A. Zazouli, H. Susanto, S. Nasseri, M. Ulbricht, Influences of solution chemistry and polymeric natural organic matter on the removal of aquatic pharmaceutical residuals by nanofiltration, Water Res. 43 (13) (2009) 3270-3280 [159] A.F.S. Foureaux, E.O. Reis, Y. Lebron, V. Moreira, L.V. Santos, M.S. Amaral, L.C. Lange, Rejection of pharmaceutical compounds from surface water by nanofiltration and reverse osmosis, Sep. Purif. Technol. 212 (2019) 171-179 [160] S. Miralles-Cuevas, I. Oller, A.R. Aguirre, J.A. Sánchez Pérez, S.M. Rodríguez, Removal of pharmaceuticals at microg L-1 by combined nanofiltration and mild solar photo-Fenton, Chem. Eng. J. 239 (2014) 68-74 [161] A.M. Comerton, R.C. Andrews, D.M. Bagley, C.Y. Hao, The rejection of endocrine disrupting and pharmaceutically active compounds by NF and RO membranes as a function of compound and water matrix properties, J. Membr. Sci. 313 (1-2) (2008) 323-335 [162] H.O. Huang, H. Cho, K. Schwab, J.G. Jacangelo, Effects of feedwater pretreatment on the removal of organic microconstituents by a low fouling reverse osmosis membrane, Desalination 281 (2011) 446-454 [163] T. Fujioka, S.J. Khan, J.A. McDonald, L.D. Nghiem, Rejection of trace organic chemicals by a hollow fibre cellulose triacetate reverse osmosis membrane, Desalination 368 (2015) 69-75 [164] I. Koyuncu, O.A. Arikan, M.R. Wiesner, C. Rice, Removal of hormones and antibiotics by nanofiltration membranes, J. Membr. Sci. 309 (1-2) (2008) 94-101 [165] J.H. Al-Rifai, H. Khabbaz, A.I. Schäfer, Removal of pharmaceuticals and endocrine disrupting compounds in a water recycling process using reverse osmosis systems, Sep. Purif. Technol. 77 (1) (2011) 60-67 [166] J. Danzig, W. Tischer, C. Wandrey, Continuous enzyme-catalyzed production of 6-aminopenicillanic acid and product concentration by reverse osmosis, Chem. Eng. Technol. 18 (4) (1995) 256-259 [167] S.Q. Wang, S.Z. Li, Reverse osmosis treatment of oxytetracycline crystalline mother liquor, Urban Environ. Urban Ecol. 12 (1999) 25-26 [168] L. Liu, Y.R. Liu, Concentration and separation of Lincomycin from its broth by membrane technology, Tech. Water. Treat. 26 (2000) 169-171 [169] C.S. Liu, X.Y. Wu, Application of reverse osmosis method for concentrating erythromycin broth, Chin. J. Antibiot. 5 (1994) 336-339 [170] M.G. Buonomenna, J. Bae, Organic solvent nanofiltration in pharmaceutical industry, Sep. Purif. Rev. 44 (2) (2015) 157-182 [171] M. Sun, S.X. Gan, D.F Yin, H.Y Liu, W.D Yang, Application of nanofiltration membrane in the purification process of tylosin, Chin. J. Antibiot. 3 (2000) 172-174 [172] G. Székely, M. Gil, B. Sellergren, W. Heggie, F.C. Ferreira, Environmental and economic analysis for selection and engineering sustainable API degenotoxification processes, Green Chem. 15 (1) (2013) 210-225 [173] I. Sereewatthanawut, F.W. Lim, Y.S. Bhole, D. Ormerod, A. Horvath, A.T. Boam, A.G. Livingston, Demonstration of molecular purification in polar aprotic solvents by organic solvent nanofiltration, Org. Process Res. Dev. 14 (3) (2010) 600-611 [174] D. Ormerod, B. Sledsens, G. Vercammen, D. van Gool, T. Linsen, A. Buekenhoudt, B. Bongers, Demonstration of purification of a pharmaceutical intermediate via organic solvent nanofiltration in the presence of acid, Sep. Purif. Technol. 115 (2013) 158-162 [175] L. Peeva, J. da Silva Burgal, I. Valtcheva, A.G. Livingston, Continuous purification of active pharmaceutical ingredients using multistage organic solvent nanofiltration membrane cascade, Chem. Eng. Sci. 116 (2014) 183-194 [176] J. Chau, K.K. Sirkar, K.J. Pennisi, G. Vaseghi, L. Derdour, B. Cohen, Novel perfluorinated nanofiltration membranes for isolation of pharmaceutical compounds, Sep. Purif. Technol. 258 (2021) 117944 [177] K. Drauz, I. Grayson, A. Kleemann, H.P. Krimmer, W. Leuchtenberger, C. Weckbecker, Amino Acids, Ullman's Encyclopaedia of Industrial Chemistry, Wiley, New Jersey,, 2007 [178] K.P. Wang, X.M. Wang, B. Januszewski, Y.L. Liu, D.Y. Li, R.Y. Fu, M. Elimelech, X. Huang, Tailored design of nanofiltration membranes for water treatment based on synthesis-property-performance relationships, Chem. Soc. Rev. 51 (2) (2022) 672-719 [179] J. Ecker, T. Raab, M. Harasek, Nanofiltration as key technology for the separation of LA and AA, J. Membr. Sci. 389 (2012) 389-398 [180] S.L. Li, C. Li, Y.S. Liu, X.L. Wang, Z. Cao, Separation of l-glutamine from fermentation broth by nanofiltration, J. Membr. Sci. 222 (1-2) (2003) 191-201 [181] P. Pal, R. Kumar, S. Banerjee, Purification and concentration of gluconic acid from an integrated fermentation and membrane process using response surface optimized conditions, Front. Chem. Sci. Eng. 13 (1) (2019) 152-163 [182] M. Alexandri, R. Schneider, J. Venus, Membrane technologies for lactic acid separation from fermentation broths derived from renewable resources, Membranes (Basel) 8 (4) (2018) E94 [183] M.H. López Leiva, M. Guzman, Formation of oligosaccharides during enzymic hydrolysis of milk whey permeates, Process. Biochem. 30 (8) (1995) 757-762 [184] A.K. Goulas, P.G. Kapasakalidis, H.R. Sinclair, R.A. Rastall, A.S. Grandison, Purification of oligosaccharides by nanofiltration, J. Membr. Sci. 209 (1) (2002) 321-335 [185] J.Q. Luo, S.W. Guo, Y.Y. Wu, Y.H. Wan, Separation of sucrose and reducing sugar in cane molasses by nanofiltration, Food Bioprocess Technol. 11 (5) (2018) 913-925 [186] J.Q. Luo, X.F. Hang, W. Zhai, B.K. Qi, W.J. Song, X.R. Chen, Y.H. Wan, Refining sugarcane juice by an integrated membrane process:Filtration behavior of polymeric membrane at high temperature, J. Membr. Sci. 509 (2016) 105-115 [187] S.W. Guo, J.Q. Luo, Q.J. Yang, X.F. Qiang, S.C. Feng, Y.H. Wan, Decoloration of molasses by ultrafiltration and nanofiltration:Unraveling the mechanisms of high sucrose retention, Food Bioprocess Technol. 12 (1) (2019) 39-53 [188] S.T. Morthensen, J.Q. Luo, A.S. Meyer, H. Jørgensen, M. Pinelo, High performance separation of xylose and glucose by enzyme assisted nanofiltration, J. Membr. Sci. 492 (2015) 107-115 [189] M.M.H. Huisman, H.A. Schols, A.G.J. Voragen, Cell wall polysaccharides from soybean (glycine max.) meal. isolation and characterisation, Carbohydr. Polym. 37 (1) (1998) 87-95 [190] Z.K. Li, K. Wang, Y.S. Zhang, Eco-friendly separation and purification of soybean oligosaccharides via nanofiltration technology, Sep. Sci. Technol. 53 (5) (2018) 777-785 [191] T.T. Gao, H.B. Wu, L. Tao, L.T. Qu, C. Li, Enhanced stability and separation efficiency of graphene oxide membranes in organic solvent nanofiltration, J. Mater. Chem. A 6 (40) (2018) 19563-19569 [192] F.Q. Shi, Y.Q. Yin, J Cai, J. Qin, A kind of vitamin B2 wastewater resourcefulness integrated treatment device, CN206204088U 2017 [193] H.Y. Liu, J.M. Zhang, J. Bai, T. Chen, Application of nanofiltration membrane in production of Vitamin B12, HeBei Chem. Ind. 34 (2011) 27-28 [194] C.X. Chen, Membrane Separation, Chemical Industry Press Co.,Ltd., Beijing, 2017 [195] H.Y. AbouL-Enein, I.W. Wainer, The Impact of Stereo Chemistry on Drug Development and Use, Wiley, New Jersey, 1997 [196] P. Vedovello, C. Marcio Paranhos, C. Fernandes, M. Elizabeth Tiritan, Chiral polymeric membranes:Recent applications and trends, Sep. Purif. Technol. 280 (2022) 119800 [197] G. Subramanian, Chiral Separation Techniques, Wiley, New Jersey, 2006 [198] R. Xie, L.Y. Chu, J.G. Deng, Membranes and membrane processes for chiral resolution, Chem. Soc. Rev. 37 (6) (2008) 1243-1263 [199] A. Higuchi, M. Tamai, Y.A. Ko, Y.I. Tagawa, Y.H. Wu, B.D. Freeman, J.T. Bing, Y. Chang, Q.D. Ling, Polymeric membranes for chiral separation of pharmaceuticals and chemicals, Polym. Rev. 50 (2) (2010) 113-143 [200] T.Q. Liu, Z. Li, J.J. Wang, J. Chen, M. Guan, H.D. Qiu, Solid membranes for chiral separation:A review, Chem. Eng. J. 410 (2021) 128247 [201] L.M. Yuan, W. Ma, M. Xu, H.L. Zhao, Y.Y. Li, R.L. Wang, A.H. Duan, P. Ai, X.X. Chen, Optical resolution and mechanism using enantioselective cellulose, sodium alginate and hydroxypropyl-β-cyclodextrin membranes, Chirality 29 (6) (2017) 315-324 [202] K. Singh, S. Devi, H.C. Bajaj, P. Ingole, J. Choudhari, H. Bhrambhatt, Optical resolution of racemic mixtures of amino acids through nanofiltration membrane process, Sep. Sci. Technol. 49 (17) (2014) 2630-2641 [203] W.J. Wang, X.L. Dong, J.P. Nan, W.Q. Jin, Z.Q. Hu, Y.F. Chen, J.W. Jiang, A homochiral metal-organic framework membrane for enantioselective separation, Chem. Commun. 48 (56) (2012) 7022 [204] Z.X. Kang, M. Xue, L.L. Fan, J.Y. Ding, L.J. Guo, L.X. Gao, S.L. Qiu, "Single nickel source" in situ fabrication of a stable homochiral MOF membrane with chiral resolution properties, Chem. Commun. 49 (90) (2013) 10569 [205] Y.L. Chen, L. Xia, Z.C. Lu, G.K. Li, Y.L. Hu, In situ fabrication of chiral covalent triazine frameworks membranes for enantiomer separation, J. Chromatogr. A 1654 (2021) 462475 [206] L.W. Guo, Scientific and technological problems in the field of Chinese drug membrane separation, Membr. Sci. Tech. 23 (2003) 209-2013 [207] Q. Cen, L.L. Zhou, T. Li, Membrane separation technique and its application in the field of traditional Chinese medicine, J. Shenyang Pharm. Univ. 1 (2008) 77-80 [208] L.W. Guo, Significant demand and key problems of membrane science and technology applying to pharmaceutical industry of Chinese materia medica, Chin. Tradit. Herbal Drugs 40 (2009) 1849-1855 [209] D.D. Si, Z.R. Gu, W. Xu, C. Fang, Experimental study of nanofiltration concentration of Astragalus membranaceus extract, Chin. Tradit. Pat. Med.29 (2007) 1854-1857 [210] C. Wang, Preparation of ultrafiltration membrane and nanofiltration membrane and its purification of tanshinone in salvia miltiorrhiza extract, BUCT 2019 [211] C.Q. Chao, Y.D. Zhao, M.J. Tang, Q. Zhang, Y.S. Ye, L. Su, Q. Li, H.M. Lei, Membrane separation technology and the application in the traditional Chinese medicine, in Proceedings of the Ninth Annual Conference of the Chinese Society of Traditional Chinese Medicine, China Xiamen. 2014 [212] J.K. Zhou, Y. Huang, F.H. Ge, S. Zhou, Study on concentration of salvianolic acid B extraction solution by nanofiltration, Pharm. Today 19 (2009) 26-28 [213] L. Wang, W.M. Ke, L. Fang, W.T. Wang, Y. Zhang, L.N. Yang, Reverse osmosis membrane application ill concentrated ill the extraction of traditional Chinese medicine, Mod. Sci. Instrum. 2 (2015) 154-156 [214] X.C. Song, J.L. Wang, S.C. Wei, Z.W. Wang, H. Jin, Investigation of purification and concentration process for water extract of angelicae sinensis radix with ultrafiltration-nanofiltration integrated technology, Chin. J. Exp. Tradit. Med. Form. 22 (2016) 13-15 [215] J.R. kuang, B.C. Chen, Process evaluation and verification for purification and concentration of Tangshenkang granules extracts by ultrafiltration-reverse osmosis combined with chromatography, J. Guangzhou Univ. Tradit. Chin. Med. 35 (2018) 501-506 [216] Y. Ye, Y.B. Zhang, Researches on separation condition and energy efficiency of membrane technology in complex Chinese medicines, Lishizhen Med. Mater. Med. Res.19 (2008) 1884-1885 [217] Y.Y. Cai, B.T. Guo, W.H. Xing, C.J. Gao, Progress research on development of membrane technology and materials for health industry, Chin. J. Chem. Eng. 71 (2020) 2921-2932 |
[1] | Xiaoyue Yao, Yu Liu, Zhenyu Chu, Wanqin Jin. Membranes for the life sciences and their future roles in medicine[J]. 中国化学工程学报, 2022, 49(9): 1-20. |
[2] | Wenjun Zhang, Wenshu Ge, Min Li, Shuangqing Li, Minqiang Jiang, Xiujuan Zhang, Gaohong He. Short review on liquid membrane technology and their applications in biochemical engineering[J]. 中国化学工程学报, 2022, 49(9): 21-33. |
[3] | Lin-Bing Zou, Jue-Ying Gong, Xiao-Jie Ju, Zhuang Liu, Wei Wang, Rui Xie, Liang-Yin Chu. Smart membranes for biomedical applications[J]. 中国化学工程学报, 2022, 49(9): 34-45. |
[4] | Ting He, Songhong Yu, Jinhui He, Dejian Chen, Jie Li, Hongjun Hu, Xingrui Zhong, Yawei Wang, Zhaohui Wang, Zhaoliang Cui. Membranes for extracorporeal membrane oxygenator (ECMO): History, preparation, modification and mass transfer[J]. 中国化学工程学报, 2022, 49(9): 46-75. |
[5] | Sihan Huang, Yaohan Chen, Xue Wang, Jing Guo, Yonggang Li, Lei Dai, Shenghai Li, Suobo Zhang. Preparation of antifouling ultrafiltration membranes from copolymers of polysulfone and zwitterionic poly(arylene ether sulfone)s[J]. 中国化学工程学报, 2022, 49(9): 100-110. |
[6] | Yuanyuan Jin, Siping Ding, Peiyun Li, Xuefen Wang. Coordination of thin-film nanofibrous composite dialysis membrane and reduced graphene oxide aerogel adsorbents for elimination of indoxyl sulfate[J]. 中国化学工程学报, 2022, 49(9): 111-121. |
[7] | Ping Zhang, Chao Gong, Tao Zhou, Peng Du, Jieyu Song, Mengyang Shi, Xuerui Wang, Xuehong Gu. Helium extraction from natural gas using DD3R zeolite membranes[J]. 中国化学工程学报, 2022, 49(9): 122-129. |
[8] | Yang Liu, Qiu Han, Guiliang Li, Haibo Lin, Fu Liu, Gang Deng, Dingfeng Lv, Weijie Sun. Purifying chylous plasma by precluding triglyceride via carboxylated polyethersulfone microfiltration membrane[J]. 中国化学工程学报, 2022, 49(9): 130-139. |
[9] | Juanjuan Liu, Xiaolong Lu, Guiming Shu, Ke Li, Shuyun Zheng, Xiao Kong, Tao Li, Jun Yang. The facile method developed for preparing polyvinylidene fluoride plasma separation membrane via macromolecular interaction[J]. 中国化学工程学报, 2022, 49(9): 140-149. |
[10] | Fengfeng Gao, Jinhua Luo, Xuefeng Zhang, Xiaogang Hao, Guoqing Guan, Zhong Liu, Jun Li, Qinglong Luo. Electrodeposited iodide ions imprinted polypyrrole@bismuth oxyiodide film for an electrochemically switched renewable extractor towards iodide ions[J]. 中国化学工程学报, 2022, 49(9): 161-169. |
[11] | Wei Hong, Xinran Shen, Jian Wang, Xin Feng, Wenjing Zhang, Jing Li, Zidong Wei. High-loading Pt-alloy catalysts for boosted oxygen reduction reaction performance[J]. 中国化学工程学报, 2022, 48(8): 30-35. |
[12] | Pan Zhang, Guanghui Chen, Weiwen Wang, Guodong Zhang, Huaming Wang. Analysis of the nutation and precession of the vortex core and the influence of operating parameters in a cyclone separator[J]. 中国化学工程学报, 2022, 46(6): 1-10. |
[13] | Dengke Pang, Zhihong Zhang, Yongquan Zhou, Zhenhai Fu, Quan Li, Yongming Zhang, Guangguo Wang, Zhuanfang Jing. The process and mechanism for cesium and rubidium extraction with saponified 4-tert-butyl-2-(α-methylbenzyl) phenol[J]. 中国化学工程学报, 2022, 46(6): 31-39. |
[14] | Jipeng Dong, Fei Wang, Guanghui Chen, Shougui Wang, Cailin Ji, Fei Gao. Fabrication of nickel oxide functionalized zeolite USY composite as a promising adsorbent for CO2 capture[J]. 中国化学工程学报, 2022, 46(6): 207-213. |
[15] | Xiaomin Qiu, Yuanyuan Shen, Zhengkun Hou, Qi Wang, Zhaoyou Zhu, Yinglong Wang, Jingwei Yang, Jun Gao. Mechanism analysis of solvent selectivity and energy-saving optimization in vapor recompression-assisted extractive distillation for separation of binary azeotrope[J]. 中国化学工程学报, 2022, 46(6): 271-279. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||