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Abstract  Electrical capacitance tomography (ECT) is a non-invasive imaging technique that aims at visualizing 
the cross-sectional permittivity distribution and phase distribution of solid/gas two-phase flow based on the meas-
ured capacitance. To solve the nonlinear and ill-posed inverse problem: image reconstruction of ECT system, this 
paper proposed a new image reconstruction method based on improved radial basis function (RBF) neural network 
combined with adaptive wavelet image enhancement. Firstly, an improved RBF network was applied to establish 
the mapping model between the reconstruction image pixels and the capacitance values measured. Then, for better 
image quality, adaptive wavelet image enhancement technique was emphatically analyzed and studied, which be-
longs to a space-frequency analysis method and is suitable for image feature-enhanced. Through multi-level wavelet 
decomposition, edge points of the image produced from RBF network can be determined based on the neighbor-
hood property of each sub-band; noise distribution in the space-frequency domain can be estimated based on statis-
tical characteristics; after that a self-adaptive edge enhancement gain can be constructed. Finally, the image is re-
constructed with adjusting wavelet coefficients. In this paper, a 12-electrode ECT system and a pneumatic convey-
ing platform were built up to verify this image reconstruction algorithm. Experimental results demonstrated that 
adaptive wavelet image enhancement technique effectively implemented edge detection and image enhancement, 
and the improved RBF network and adaptive wavelet image enhancement hybrid algorithm greatly improved the 
quality of reconstructed image of solid/gas two-phase flow [pulverized coal (PC)/air]. 
Keywords  electrical capacitance tomography, image reconstruction, radial basis function network, wavelet image 
enhancement 

1  INTRODUCTION 

Multi-phase flow widely exists in petroleum, 
chemical, metallurgical and other industrial production 
fields. In order to reduce atmospheric pollution and pipe 
erosion, improve product quality and process effi-
ciency, the flow parameters measurement of two-phase 
flow by pneumatic conveying means becomes in-
creasingly widespread. Especially, flow regime, veloc-
ity and mass flow rate, in transition section behind a 
throttle or a reducer or a bent pipe need to be measured 
and investigated. Because wear (even powder leakage) 
and powder accumulation (even blockage) usually oc-
curs here. These complex processes can be visualized 
through tomography imaging technology. 

ECT (Electrical capacitance tomography) is a 
newly-developed computer-aided tomography imag-
ing technology, which reconstructs the distribution 
image of multiphase flow and furthermore allows for 
non-invasive visualizing the internal structure of closed 
pipelines by measuring the capacitances between sur-
face electrodes located around the object. It has great 
development potential and broad prospects in indus-
trial fields with its many advantages of non-invasive 
measurement, safe, simple structure, low cost and wide 
application [1-4]. 

However, due to the random and complex nature 
of solid/gas two-phase flow, the small number of in-
dependent capacitance measurements and the “soft” 
characteristic of sensitive field, it is rather difficult to 

realize high-quality image reconstruction. There are 
several image reconstruction algorithms for ECT inverse 
problem [5-8]. For example, linear back projection 
(LBP) algorithm (generally used for qualitative analy-
sis has faster speed but poor accuracy), iterative algo-
rithm [9], multiple linear regression and regularization 
(MLRR) algorithm [10] and so on all have their own 
advantages and disadvantages. Compared with these 
traditional linear algorithms, neural networks have the 
abilities of self-organizing, self-adaptive, self-learning 
and massively parallel distributed storage and proc-
essing, which is particularly suitable for solving such 
non-linear and ill-posed problems of ECT image re-
construction. 

Image reconstruction algorithm based on im-
proved RBF neural network is proposed to fulfill the 
requirement of flow regime identification. And for 
better image quality, an adaptive wavelet image en-
hancement technique is emphatically introduced, which 
belongs to a space-frequency analysis method suitable 
for image feature-enhanced. Experiments and image 
reconstruction confirmed the advantages of the pro-
posed image reconstruction algorithm and the possibil-
ity of the flow parameters measurement of dilute solid- 
gas two-phase flow in transition section using ECT. 

2  ECT SYSTEM 

ECT attempts to image the permittivity distribution 
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inside a pipe by measuring the electrical capacitances 
between electrodes placed around its periphery. Its 
physical basis is that, when the component concentra-
tion and the distribution of each phase in the pipe 
changed, the equivalent dielectric constant would cor-
respondingly change, and so do the measured capaci-
tances between electrodes. Thus, media distribution in 
the tubes could be calculated from measurement of the 
capacitance between electrodes. A complete ECT sys-
tem consists of three parts as shown in Fig. 1: Capaci-
tance measurement electrode array, data acquisition 
and processing unit, image reconstruction unit. 

2.1  Capacitance measurement electrode array 

In this work, epoxy glass tube as the insulated 
pipeline was 400 mm long; 12 measurement elec-
trodes were mounted symmetrically on the outside of 
the epoxy pipe. In order to reduce high constant ca-
pacitance between adjacent electrodes for expanding 
dynamic range of the system, radial shielding elec-
trodes were used. Additionally, insulating materials 
were filled between the radial electrodes, around 
which another thin copper plate was welded to form 

the inner screen. A supporting copper tube outside of 
the inner screen acts as the outer screen. A follower 
was connected between the inner and outer screens, 
which formed an equal potential space between the 
screens. This specific design is used to prevent leak-
age of weak signal and to eliminate the effect of elec-
tromagnetic interference and stray capacitance. 

Parameters of ECT sensor were listed in Table 1. 

2.2  Data acquisition and processing unit 

Data acquisition and processing unit included 
multi-channel data acquisition, capacitance/voltage 
(C/V) conversion, A (analog)/D (digital) conversion 
and communication interface. This unit adopted a 
control structure based on data acquisition card. In this 
unit, the design of C/V conversion circuit was a most 
critical problem as imaging effect and real-time per-
formance largely depended on the accuracy and the 
speed of data acquisition system.  

The basic circuit of the data acquisition and 
processing unit was shown in Fig. 2 [11]. It consisted 
of a current detector with a capacitor-array, a precision 
rectifier circuit and a second-order low-pass filter, 

 
Figure 1  Schematic of a ECT system 

Table 1  Main parameters of ECT sensor 

Inner diameter/mm Outer diameter/mm Inner shield diameter/mm Outer shield diameter/mm Electrode length/mm Electrode width/mm

96 100 152 170 125 23 mm 

Electrode 
opening angle/(°) 

Electrode 
interval/(°) 

Electrode 
material 

Insertion depth of 
radial electrodes/mm 

Radial shielding 
electrodes length/mm 

Radial shielding 
electrodes width/mm

26 4 red copper 1 135 26.8 

 
Figure 2  The circuit diagram of data acquisition and processing unit 
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which acted as AM (amplitude moderation) modulator 
and demodulator, respectively. An excitation voltage 
with 1 MHz carrier frequency and 1 V amplitude was 
used. A DSP (digital signal processor) with 2-channel 
18-bit ADC (analog to digital converter) was used for 
data processing and logic control. The feedback ca-
pacitance is selected to approximate measurement 
capacitance in order that the gain of A1 is about one in 
a wide range of measured capacitance. 

2.3  Image reconstruction 

Image reconstruction is generally aided by a 
computer, mainly responsible for transmitting data to 
the external interface circuit and receiving data from 
the acquisition system. Then use the appropriate algo-
rithm for image reconstruction and display the image. 
As image reconstruction of ECT system is a 
non-linear and ill-posed inverse problem, a new image 
reconstruction algorithm based on improved RBF 
neural network and adaptive wavelet image enhance-
ment for solid/gas two-phase flow was presented. 

3  THEORY OF IMPROVED RBF NEURAL 
NETWORK 

3.1  RBF neural network 

RBF (radial basis function) network is a local 
approximation three-layer feed forward neural net-
work. It is much better than the traditional BP network 
in approximation ability, classification ability and 
learning speed [12]. The structure of RBF neural net-
work is shown in Fig. 3 [13, 14]. 

 
Figure 3  Structure of RBF neural network 

The input vector and the corresponding desired 
output vector of the ith normalized sample are respec-
tively set:  

( )1 2, , ,i i i i
MX x x x= ⋅ ⋅ ⋅     ( 1,2, , )i N= ⋅ ⋅ ⋅     (1) 

( )1 2, , ,i i i i
SY y y y= ⋅ ⋅ ⋅     ( 1,2, , )i N= ⋅ ⋅ ⋅       (2) 

where N is the sample size, M and S are respectively 
the dimensions of input vector and output vector. 

Select Gaussian kernel—function of the Euclidean 

distance between input vectors and training data 
points—as the radial basis function in this work. For 
the nth sample, input of the jth hidden layer neuron is 
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where n
ix  is the component of input vector nX , jiμ  

is the ith central vector of the jth hidden layer basis 
function, jσ  is the width of the jth basis function.  

Output of the jth hidden layer neuron is 
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where kjω  is the connection weight value between the 
jth hidden layer neuron and the kth output layer neuron. 

3.2  Improved RBF neural network 

During the training of RBF network, identifying 
the number of hidden layer neurons is a key issue. The 
traditional approach is to make it equal to the input 
vector elements. Clearly, in most cases, the input vec-
tors are too many and the over-calculated hidden neu-
rons will inevitably lead to the increase in computa-
tional load. Therefore, the dynamic-means clustering 
algorithm is introduced in this paper. 

The mathematical steps are as follows: 
(1) Set the output precision E, that is, the rms 

(root-mean-square) error between actual output and 
target output of the RBF neural network; Arbitrarily 
set the number of hidden layer neurons; 

(2) Randomly select M samples from the input 
sample sets and take them as the central data of Gaus-
sian function for the hidden layer; Choose the width of 
Gaussian function at random; 

(3) Construct RBF network on the basis of the 
selected central data and width; Calculate weight val-
ues between hidden layer and output layer; Calculate 
the actual output Y and thus the rms error between 
actual output Y and target output y.  

(4) If ( )E M E> , go to Step (5); otherwise set 
1M M= +  and repeat Steps (2) to (4); 

(5) Compare ( )E M  with ( 1)E M − ; If they can 
both met accuracy requirements, then let 1M M= −  
and go to Step (2); If ( 1)E M E− > , then let M be the 
number of hidden layer neurons. 

4  ADAPTIVE WAVELET IMAGE ENHANCE-
MENT TECHNIQUE 

Image reconstruction algorithm based on neural 
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network commonly has the features of vague charac-
teristic and poor accuracy, so a space-frequency analy-
sis method that has multi-resolution characteristic and 
the capacity of characterizing local features of signals 
both in time domain and frequency domain was ap-
plied to this work to enhance image feature [15, 16]. 
Such methods commonly adopted the following steps: 
First, multi-level wavelet decomposition for original 
image, determine edge points of each sub-band image 
by their field characteristics; Then, estimate the noise 
distribution of space-frequency domain on the basis of 
statistical properties and successively construct edge 
enhancement gains; Finally, reconstruct the image 
with the adjusted wavelet coefficients [17]. 

4.1  Theory of wavelet decomposition 

Two-dimensional discrete wavelet decomposition 
was frequently applied in the field of image processing. 
Suppose both the two-dimensional scaling function 
and the wavelet function are equations with variables 
separable: ( , ) ( ) ( )x y x yφ φ φ= ⋅ , ( , ) ( ) ( )x y x yψ ψ ψ= ⋅ . 
By use of tensor product, the concept of one-dimensional 
resolution can be easily extended to two-dimensional 
circumstances [18]. 

Steps of two-dimensional discrete wavelet are as 
follows: First, decompose the original image along its 
line direction with low-pass decomposition filter 
(LP_D) and high-pass decomposition filter (HP_D). 
Then decompose the results of line direction decom-
position along the column direction. Decomposition 
process was shown in Fig. 4. After that, repeat the 
previous decomposition process twice with input sig-
nal LL1. Finally, the sub_band image of three-level 
wavelet decomposition can be obtained. 

 
Figure 4  Two-dimensional discrete wavelet decomposition 

Wavelet decomposition has the ability of energy 
compression. That is, most energy is concentrated on a 
few wavelet coefficients which have larger amplitudes 
and generally represent important image characteris-
tics, such as edge points; While amplitudes of major-
ity coefficients are small, generally corresponding to 
the noise points of image. By setting a certain ap-
proach to adjust the wavelet coefficients according to 

some rules, the purpose of improving imaging quality 
could be achieved [19]. 

4.2  Theory of adaptive wavelet image enhance-
ment technique 

Adaptive wavelet image enhancement technique 
has two key issues: discrimination of sub-band image 
edge points and determination of adjustment function 
of wavelet coefficients. 

(1) The discriminate of sub-band image edge 
points  

The multi-scale gradients of the sub-band image 
with three-level wavelet decomposition are calculated 
according to the following formulas [20]: 

2 2
1 2( , ) ( , ) ( , )i i ix y w x y w x yμ ⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦     (6) 
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Here 1( , )iw x y  and 2 ( , )iw x y  denote the horizontal 
and the vertical sub-band image of the ith layer, re-
spectively. ( , )i x yμ  and ( , )i x yθ  are the gradient mag-
nitude and the gradient direction, respectively. The 
gradient direction is usually quantified to eight direc-
tions: 0°, ±45°, ±90°, ±135°, 180°. 

( , )ijw x y  would be considered as an edge point if 
the following conditions are met: (1) The gradient 
magnitude ( , )i x yμ  of point ( , )ijw x y  is greater than 

the other two points in the gradient direction ( , )i x yθ . 
(2) ( , )i x yμ  is greater than a certain threshold value, 
for example / 2ijσ , where ijσ  is the standard devia-

tion of sub-band image ijw . 
(2) Adjustment functions of wavelet coefficients. 
Although edge points and noise points have dif-

ferent properties in the space-frequency domain, their 
disparity is relative and it is difficult for any method to 
absolutely distinguish them. This work adopted the 
following adjustment function of wavelet coefficients 
to enhance the edge points with certain self-adaptability 
in space-frequency domain. 

The sub-band image ( , )ijw x y  was adjusted ac-
cording to the following formula: 

ˆ ( , ) ( , ) ( , )ij ij ijw x y g x y w x y=          (8) 

where ˆ ( , )ijw x y  is the sub-band image after adjust-

ment, and ( , )ijg x y  is the enhancement gains with 
self-adaptability in space-frequency domain. If 

( , )ijw x y  is judged to be the non-edge point, ( , )ijg x y  
does not to enhance and equals to 1. 

( , )ijg x y  should be adaptive so that it can be ap-
plied to images whose noise is unevenly distributed in 
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frequency space. In this work, ( , )ijg x y  was defined 
by the following formula: 

max
max min

0max
0

1
( , ) ( , )ij

ij ij
g

g x y g x yσ σ
σ

−
⎡ ⎤= − −⎣ ⎦   (9) 

where ( , )x yσ  denotes the local standard deviation of 
a neighborhood of point ( , )x y  in the original image S. 

max
0σ , min

0σ  denote respectively the maximum and the 
minimum local standard deviation in the original im-
age S. max

ijg is defined as  
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where ijσ  is the standard deviation of sub-band image 
ijw . k, a constant factor, is selected based on image con-

tent to avoid over-enhancement and less-enhancement 
of edge points. In this paper, let 1k = . L is the level of 
wavelet decomposition. 

It can be seen from Eq. (9), the maximum value 
of ( , )ijg x y  is max

ijg . When the noise level of 
sub-band image ijw  is low, max

ijg  is larger; otherwise, 
max
ijg  is relatively smaller. Namely, max

ijg  has certain 
adaptability in noise distribution at different analysis 
levels and directions [21]. 

5  IMAGE RECONSTRUCTION 

For an ECT system, image reconstruction is to 
reflect phase distribution of the internal dielectric con-
stants in solid/gas two-phase flow. Algorithm was ap-
proximately divided into two steps:  

(1) Establish mapping model between capaci-
tance values and image pixels of corresponding flow 
regime based on improved RBF neural network.  

(2) Adaptive wavelet filtering for the recon-
structed images which was obtained through RBF 
neural network established above. 

5.1  Training of RBF neural network 

(1) Input training sample set 
Core, annular and bottom flow regimes of dif-

ferent sizes in horizontal gas-solid flow pipe were 
generated by the assembling throttling devices (de-
scribed in Section 6.2) under different operation con-
ditions (different kinds of coals with different particle 
diameters used as the conveyed medium and the car-
rier air rate from 15 to 25 m·s−1), and the data summed 
to 110 groups for the network training. For each flow 
condition, 66 capacitance values of a data point would 
be obtained between 12 ECT electrodes as the input 
training sample to the RBF neural network. In order to 
improve the generality of this algorithm, capacitance 
values were normalized. 

(2) Target output sample set 
Extract pixels from images of different flow  

regimes of different sizes under MATLAB platform 
and take them as the target output sample set of RBF 
network. Comprehensively considering imaging speed, 
computer memory and actual measurement require-
ments, we chose 100×100 pixels as the image output. 

(3) Construct RBF neural network 
The neuron numbers of input layer and output 

layer of RBF network respectively depended on input 
dimension and output dimension: 66 and 100×100. 
Gaussian function was adopted as the basic function 
of hidden-layer. The number of the hidden layer neu-
rons was determined by the method described in Sec-
tion 3.2, and here it was 23 after training starting from 
certain initial weights set randomly. Training process 
of RBF network under MATLAB platform was shown 
in Fig. 5. 

 
Figure 5  Program flowchart of RBF neural network training 

5.2  Image reconstruction with adaptive wavelet 
filtering 

Once the RBF network is trained successfully, 
the mapping model between the capacitance values 
and the reconstructed image pixels is established. For 
a tested sample (a group of 66 capacitance values), the 
corresponding reconstructed image can be gained im-
mediately using the trained RBF network. 

According to the principles of orthogonality, lin-
ear phase, continuation and compactly support set, 
Harr function [22] was chosen as the wavelet function 
in this paper. Through adaptive wavelet image en-
hancement, the edge points that contain detail features 
of the image can be enhanced to obtain better recon-
struction effects. The process of adaptive wavelet im-
age enhancement was shown in Fig. 6. 

The determination of the wavelet decomposition 
level L should be considered. This paper chose L to be 
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3 because with the increase of the decomposition level, 
the enhancement effect would decrease to some extent. 
The size of neighborhood window has great influence 
on algorithm performance in calculating local standard 
deviation of the original image. A large size would 
lower its adaptability and increase computation, while 
a small one would result in a longer running time and 
make the algorithm severely affected by noise. This 
paper chose a neighborhood window of 33×33; Let 
the constant factor k in Eq. (10) be 1. 

6  EXPERIMENTAL RESULTS 

The experiments were divided into two parts: 
static and dynamic experiments. For the two totally 
different experimental conditions, the sizes of the re-
construction domain both are 96 mm×96 mm. 

6.1  Static experiments 

In the static experiments, three typical flow re-
gimes of certain sizes are taken as test samples to ver-
ify the performance of proposed ECT image recon-
struction method. The epoxy glass tube filled with 
pulverized coal was placed into the center of meas-
urement pipe to simulate core flow for data collection. 
And the wall thickness of the epoxy glass tube is 1 
mm and outer diameter is 50 mm. Similarly, adopt one 
plate (width 96 mm, length 200 mm) of the same ma-
terial placed horizontal to simulate bottom flow and 
use three pipes (outer diameter: 25 mm) of the same 

material bound together to simulate roping flow. As 
for the target image for test, it was the cross section 
view of the measurement pipe after triangulation, in 
which the epoxy glass tube of different size, full of 
pulverized coal, is placed. 

The measured capacitances are obtained by the 
12-electrode ECT system in static experiments, and 
they were taken as the input of the image reconstruc-
tion model for test. Reconstruction results based on 
RBF neural network and adaptive wavelet image en-
hancement were shown in Table 2. 

Table 2  Imaging results of static experiments 

 Reconstructed image Similarity 

Core flow 

 

96.2% 

Bottom flow 

 

87.6% 

Roping flow 

 

93.4% 

From the images, we can see that the ECT system 
worked well. The algorithm based on RBF and adap-
tive wavelet image enhancement technique could ef-
fectively reflect the phase distribution of the three 
static simulation flow regimes with edge points en-
hanced. In addition, the identification results have 
high fidelity, especially for the media concentrated 
flow regime (core flow). However, there are subtle 
difference between the real image and the recon-
structed image. For example, the demarcation line 
between the pulverized coal and the air in the recon-
structed image of the bottom flow is slanted, while in 
the real image it is horizontal. In order to describe the 
performance of this system quantitatively, similarity 
degree is introduced to reflect the spatial location error. 
The expression of similarity degree “S” is shown as  

right

tatal
100%

N
S

N
= ×             (11) 

Here, Ntotal is the total pixel number; Nright is the 
correct pixel number of reconstructed image. The 
similarity degrees of the static experiments are also 
shown in Table 2. The similarity degrees of the three 

 
Figure 6  Program flowchart of image reconstruction with
adaptive wavelet image enhancement 
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test samples are 96.2%, 87.6% and 93.4%, respec-
tively. The similarity degree can be improved by in-
creasing the number of the training samples to pro-
mote the generalization ability of the algorithm. 

6.2  Dynamic experiments 

A pneumatic conveying platform for experiments 
was designed in Fig. 7. It comprised the following 
four major subsystems [23]: carrier air supply system, 
feeding system, horizontal test section, and assem-
bling throttling device. 

 
Figure 7  Schematic diagram of pneumatic conveying plat-
form 
1,5—heater; 2,9—throttle valve; 3—pitot tube; 4,6—RTD; 7—
flexible tube; 8—separator; C—coupling; T—t-mixer; U—
union joint 

Carrier air is supplied by a forced draft fan (FD 
fan). Air supply rate is controlled finely with a control 
valve 2 and coarsely with valve 9, respectively. Feeding 
system consists of a uniform speed motor, a continu-
ously adjustable gearbox, a fine linear screw feeder 
and an adjustable pressure source (FD fan) to produce 
solid/gas flow continuously and smoothly. Feeding 
ranges from 30 g·min−1 to 3 kg·min−1 of particles of 
pulverized coal. The amount of discharging is adjusted 
and calibrated by the feeder and a mesh dust collector, 
respectively. Test section is the capacitance sensor of 
the ECT system which is described in Section 2. 

The particle size distributions of pulverized coals 
were determined with a Malvern particle analyzer. 
Nos.4 and 5 pulverized coals were performed using 
Ray-mond mill. Nos. 1, 2 and No. 3 coals were per-
formed using centrifugal pneumatic mill that works on 
the principle of particle-to-particle attrition. The coal 
particle-size distributions and coal median diameters 
(dm) are shown in Fig. 8. No. 5 coal is conventional 
coal (the particle-size distribution of No. 5 coal is 
similar to that of the coal used in most utility boilers) 
was used as conveying mediums for test in the    
experiment. Nos. 1 through 4 coals can be considered 
as micronized coal in accord with the standard of  

micronized coal in USA. And they were used as con-
veying mediums for training in the experiment. 

Due to the objective of this experiment, an as-
sembling throttle is fixed in the pipeline as the flow 
regime generator in order to measure or control flow 
parameters. It is significant to do researches on these 
sectional dynamic processes for development and ap-
plication of throttling devices. A transition flow regime 
is generated and kept in a short time at the down-
stream of the throttle in a short distance. For example, 
a bottom flow can be generated behind a gate valve, a 
core flow can be generated behind a venturi tube or an 
orifice plate, and an annular flow can be generated 
behind an impact plate. The upstream edge of the as-
sembling throttle is especially designed to be stream-
lined to avoid powder accumulation, and the equiva-
lent pore diameter of the throttle is about one tenth of 

 
Figure 8  Cumulative particle-size distributions of coal 
■ No.1, dm = 11.47; ● No.2, dm = 21.73; ▲ No.3, dm = 33.69;
★ No.4, dm = 43.12; ◆ No.5, dm = 53.69 
 

Table 3  Cross section of flow regime generators and 
imaging results under solid/gas mass ratio 5︰1 

and air velocity larger than 15 m·s−1 

 Cross section of flow
regime generators 

Reconstructed image of
solid-gas flow Similarity

Core 
flow 86.7% 

Annular
flow 82.3% 

Bottom
flow 77.4% 
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its length. In this work, three different throttles are 
used to generate core flow, annular flow, and bottom 
flow. It is necessary to mention that, before every re-
gime measuring experiment starts, the experimental 
system is operated by a solenoid valve from no-flow 
to short-time flow conditions several times with pul-
verized coal as the conveyed medium and the flow 
regime can be observed by scenes imaged on the 
screen cloth fixed at the downstream of the throttle. 
Once a satisfactory flow regime is observed under 
several conditions, the screen cloth is removed and the 
ECT sensor is installed at the immediate downstream 
of the throttle in order to detect the transition flow 
regime under corresponding conditions. Steady flow 
can be also achieved by a forced draft fan or air com-
pressor under the condition of solid/gas mass ratio 
around 5︰1 and the carrier air velocity larger than 15 
m·s−1, which can be detected by the ECT system de-
signed here. Cross section diagrams of flow regime 
generators for test were shown in Table 3. 

In the dynamic experiments, three typical flow 
regimes of certain sizes generated by the flow regime 
generator are taken as test samples to verify the per-
formance of proposed ECT image reconstruction method. 
The cross section of the flow regime generator for test 
is shown in Table 3, and their sizes are shown in Table 4. 
The measured capacitances of 12-electrode ECT sys-
tem in dynamic experiments were obtained, and they 
were taken as the input of the image reconstruction 
model for test. The imaging results are shown in Table 
3, and similarity degrees of reconstructed results are 
calculated, as shown in Table 3. 

As the reconstructed images shown, identifica-
tion and imaging of the three common flow regimes 
were basically realized. In particular, the demarcation 
line of the surrounding stray points in annular flow 
and core flow are more obvious. Part of coal particles 
perhaps move and scatter irregularly in high-speed 
flow when going through the test section, resulting in 
diffusion. 

This testing method had certain shortcomings to 
be improved. In addition, the similarity of reconstruc-
tion image was affected by some factors in actual 
measuring system such as pulverized coal type, parti-
cle size and air supply rate. This can be overcomed by 
taking more measurement values as the training sam-
ple set in the future. 

7  CONCLUSIONS 

In this work, an image reconstruction algorithm 
for a 12-electrode ECT system based on improved 
RBF neural network and adaptive wavelet image  

enhancement was presented. This method established 
the mapping model between capacitance values and 
image pixels under MATLAB platform with the adap-
tive wavelet image enhancement technology to en-
hance image feature. An ECT system and a pneumatic 
conveying platform were built up for verifying the 
algorithm. Results of static experiment and dynamic 
experiment with a pneumatic conveying platform in-
dicated that this image reconstruction algorithm could 
effectively enhance the image edges so that the detail 
features were manifested clearly, besides, the hybrid 
algorithm greatly improved the quality of reconstructed 
image and made solid/gas two-phase flow (pulverized 
coal/air flow) regime identification possible using ECT. 
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