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Abstract Based on an equivalent two-dimensional Fornasini-Marchsini model for a batch process in industry, a 
closed-loop robust iterative learning fault-tolerant guaranteed cost control scheme is proposed for batch processes 
with actuator failures. This paper introduces relevant concepts of the fault-tolerant guaranteed cost control and for-
mulates the robust iterative learning reliable guaranteed cost controller (ILRGCC). A significant advantage is that 
the proposed ILRGCC design method can be used for on-line optimization against batch-to-batch process uncer-
tainties to realize robust tracking of set-point trajectory in time and batch-to-batch sequences. For the convenience 
of implementation, only measured output errors of current and previous cycles are used to design a synthetic con-
troller for iterative learning control, consisting of dynamic output feedback plus feed-forward control. The proposed 
controller can not only guarantee the closed-loop convergency along time and cycle sequences but also satisfy the 
H∞ performance level and a cost function with upper bounds for all admissible uncertainties and any actuator fail-
ures. Sufficient conditions for the controller solution are derived in terms of linear matrix inequalities (LMIs), and 
design procedures, which formulate a convex optimization problem with LMI constraints, are presented. An exam-
ple of injection molding is given to illustrate the effectiveness and advantages of the ILRGCC design approach. 
Keywords  two-dimensional Fornasini-Marchsini model, batch process, iterative learning control, linear matrix 
inequality, fault-tolerant guaranteed cost control 

1  INTRODUCTION 

Batch processing technologies have received 
widespread concerns in the past 10 years since batch 
processes are preferred for manufacturing low-volume 
and high-value products [1]. Though the study on 
batch process control can be dated back to 1930s [2], 
the process optimization and control lags far behind 
the development for continuous production processes. 
To guarantee the quality and quality consistency of batch 
processes, advanced control is critical importance. 

The high productivity demand pushes chemical 
plants to operate under challenging conditions, which 
of course leads to the possibility of system failures. If 
a failure is not controlled promptly with a proper cor-
rective action, it will degrade the process performance, 
and in serious cases, result in safety problems for the 
plant and personnel. Fault detection and diagnosis can 
detect and estimate the faults [3, 4], whereas fault-tolerant 
control (FTC) is capable of maintaining the perform-
ance of closed-loop systems at an acceptable level in 
the presence of faults. Among those FTC methods, 
reliable control is popular [5]. The study on reliable 
control has received considerable attention for con-
tinuous processes because of the growing demands on 
reliability. However, only limited results on FTC for 

batch processes are available [6-8]. 
In harmony with the repetitive nature of batch 

process, iterative learning control (ILC) has been used 
widely in recent years for industrial and chemical 
batch processes to realize perfect tracking and control 
optimization [9-13]. However, in practice, many batch 
processes are slowly time-varying from batch to batch. 
ILC methods cannot hold robust stability for processes 
varying from batch to batch [14]. Recently, Shi et al. 
proposed a more general design framework for ILC of 
batch process, i.e., the feedback integrated with ILC 
method [15-20]. The results are obtained in the normal 
case. For faulty cases, there exist few results. Wang et 
al. [6] developed a 2D iterative learning reliable con-
trol (ILRC) for batch processes with actuator failures. 
The fault-tolerant control scheme for batch processes 
with sensor faults was also studied [7, 8]. 

In the robust controller design, we are concerned 
with not only the robust stability of an uncertain 
closed-loop system, but also its robust performance, 
which is more important when controlling a system 
dependent on uncertain parameters. That leads to the 
so-called guaranteed cost control approach, first in-
troduced by Chang and Peng [21]. Such problem for 
1D and 2D discrete uncertain systems has received 
considerable attention and robust controller design 
methods have been established [22-24]. Although the 
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results can be extended to robust iterative learning 
guaranteed cost controller design, no results on such 
issue are available. 

In this paper, based on the 2D system theory, we 
design a robust iterative learning reliable guaranteed 
cost controller (ILRGCC) for batch processes with 
actuator failures. Different from previous investiga-
tions [7, 8], this ILRGCC intends to preserve not only 
the H∞ performance, but also the least guaranteed cost 
function with upper bounds for all admissible uncer-
tainties and any actuator failures. Since the system 
states cannot often measured in practical applications, 
the designed synthetic ILC controller consists of dy-
namic output feedback plus feed-forward control. Suf-
ficient conditions for the proposed fault tolerance 
guaranteed cost control are expressed as linear matrix 
inequalities (LMIs) and design procedures are pre-
sented in terms of a convex optimization problem with 
LMI constraints. Finally, the feasibility and effective-
ness of the proposed method are demonstrated with 
injection velocity control. 

2  PROBLEM DESCRIPTION 

Process P∑ , which is referred to a process re-
petitively performing a task over a certain period of 
time called a cycle, can be described by the following 
discrete-time model with uncertain parameter pertur-
bations 
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where k and t are cycle and time index, respectively, 
and 0,kx  is the time-wise initial state of the kth cycle. 

( , ) nt k ∈x R , ( , ) lt k ∈y R  and 1( , ) [ ( , ),t k u t k=u  

2 ( , ), , ( , )] m
mu t k u t k R  ∈"  are, respectively, the state, 

output, and input of the process at time t in the kth 
cycle. Meanwhile, nR  represents Euclidean n space, 
with the norm denoted by i .{A, B, C} are constant 
matrices of appropriate dimensions, and a ( , )t kΔ  is a 
perturbation at time t in the kth cycle and can be speci-
fied as a ( , ) ( , )t k t k= E FΔ Δ  with T ( , ) ( , )t k t k ≤ IΔ Δ , 

t T0≤ ≤ ; 1, 2,k =   " , where {E, F} are known con-
stant matrices. For any two sequential cycles, 

a a a[ ( , )] ( , ) ( , 1)t k t k t kδ = − −Δ Δ Δ  is the cycle-to-cycle 
parameter perturbation. Generally, ( , )t kΔ  is represented 
as a function of time t and cycle k. If ( , )t kΔ  depends 
on time t only, it has a[ ( , )] 0t kδ =Δ , which is called a 
repeatable perturbation; otherwise, a[ ( , )] 0t kδ ≠Δ , the 
perturbation is non-repeatable. 

For control input ( , )iu t k  ( 1, 2, ,i m=    " ), let 
F ( , )iu t k  denote the signal from the failed actuator. The 

failure model can be represented as 
F ( , ) ( , ),i i iu t k u t kα=   (for 1, 2, ,i m=    " )   (2) 

where 
0 ,i i iα α α≤ ≤ ≤   (for 1, 2, ,i m=    " )   (3) 

The terms iα  ( 1iα ≤ ) and iα ( 1iα ≥ ) are known 
scalars. 

The failure model expressed by Eq. (2) is widely 
adopted. The parameter iα  is unknown but is assumed 
to vary within a known range, which can be described 
by four forms: i iα α=  corresponding to the normal 

case F ( , ) ( , )i iu t k u t k= ; 0iα >  representing a partial 
failure case, i.e., partial degradation of the actuator; 

0iα =  covering the outage case and the stuck fault 
making the output of an actuator at a constant value. 
When encountering the last two failures, the system 
will no longer have the controllability and trouble-
shooting is needed along with the use of monitoring 
tools, which is out of the range of this work. Therefore, 
we only consider 0iα >  here. Denote  

TF F F F
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[ ]1 2diag , , , mα α α=    "α           (4b) 
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[ ]1 2diag , , , mα α α=    "α           (4d) 
Meanwhile, define the following notations: 
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From Eqs. (4) and (5), for some unknown matrix 0α , 
α can be expressed as 

0( )= +Iα α β               (6) 
with 

0 0 Iβ≤ ≤α               (7) 
where 

[ ]0 01 02 0diag , , , mα α ε   � "α , 0 01 02diag[| |, |,α α |  �α  

0,| |]mα " , and i  denotes absolute value of “ i ”. 
A batch process with actuator failures is described by 
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Based on the batch process with actuator failures 
described by Eq. (8), the motive of this work can be 
stated as deriving the control law u(t, k), which can 
maintain the robust stability of system (8) and mini-
mize the performance cost at the same time. 

3  RESULTS 

3.1  Equivalent 2D model representation 

For process P∑  described by system (1), define 
an ILC law in the form of 

ilc : ( , ) ( , 1) ( , )t k t k t k∑    = − +u u r  

[for ( ,0) 0, 0,1, 2, ,t t T=     =     "u ]      (9) 

where ( ,0)tu  is the initial value of iteration and 
( , ) mt k R∈r  is called the updating law of the ILC to 

be determined. The objective of the ILC design is to 
establish a procedure for the design of a reliable guar-
anteed cost controller, Eq. (9) or equivalent updating 
law ( , )r t k , so that ( , )t ky  tracks the given setpoint 
trajectory d ( )y t  and the closed-loop system to be rep-
resented preserves an adequate control performance. 

Design the output tracking error in the current 
cycle as 

d( , ) ( , ) ( )t k t k y t= −e y         (10a) 
Meanwhile, define a batchwise direction 

function of error as 

[ ( , )] ( , ) ( , 1)k f t k f t k f t kδ = − −       (10b) 

where ( , )f t k  may be represented state variable. With 
system (1) along with the definition Eq. (10), we have 
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where ( , )t kω  is the perturbation and can be expressed 
by 

a( , ) [ ( , )] ( , 1)kt k t k t kδ= −  xω Δ       (11c) 
Obviously, for repeatable perturbations, ( , ) 0t kω = ; 
for a non-repeatable disturbance, ( , ) 0t kω ≠ . Thereby, 
an equivalent 2D error fault model 2D ep F− −∑  descrip-
tion for the above batch process can be rewritten as 

11 1 1 2 1

1 1 2 1

2D ep F
1

1

( 1, ) [ ( , )] ( , ) ( 1, 1) ( , ) ( , )

( , ) ( , ) ( 1, 1) ( , ) ( , )
: ( , 1)

( , ) ( , )
( , )

( , ) ( , ) ( , )

At k t k x t k x t k t k t k

t k t k x t k t k t k
t k

t k t k
t k

t k t k t k

− −

⎧ + = + + + − + +
⎪

 = + + − + +⎪
⎪∑  ⎨ −⎡ ⎤

= =⎪ ⎢ ⎥
⎣ ⎦⎪

⎪ =⎩ �

x A A B r G

A x A B r G
e

y Cx
e

Z e Hx

Δ α ω

α ω
       (12) 

where P( , )t R ∈Z R  is controlled output, 1( , )t k =x  

[ ( , )]
( , )

k t k
t k

δ⎡ ⎤
⎢ ⎥
⎣ ⎦

x
e

, 1
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

0
0

A
A

CA
, 2

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

0 0
0

A
I

, ⎡ ⎤
= ⎢ ⎥

⎣ ⎦

B
B

CB
, 

1
( , ) ( , )A t k t k= E FΔ Δ , ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

E
E

CE
, [ ]= 0F F , =G  

⎡ ⎤
⎢ ⎥
⎣ ⎦

I
C

, [ ]= 0H I , and 
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦0

C I
C

I
. 

The 2D error fault model 2D ep F− −∑ , a typical 
two-dimensional Fornasini-Marchsini (2D-FM) model 
with uncertain perturbations, equivalently represents 
the dynamical behavior of the tracking error of system 
(1). It is called the equivalent 2D tracking error model 
of system (1). Therefore, the design of the updating 
law ( , )r t k  for system (1) is clearly equivalent to the 
design of a reliable guaranteed cost control law for the 
equivalent 2D tracking error model 2D ep F− −∑ .    

Accordingly, for the system 2D ep F− −∑ , we assume that 
it has a finite set of initial conditions, i.e., there exist 
two positive integers t and k such that 

1 1 1 2( ,0) 0, ; (0, ) 0,t t r k k r=         =    ≥ ≥x x   (13a) 

where 1r < ∞  and 2r < ∞  are positive integers. The 
initial boundary conditions are arbitrary, but belong to 
the set 

{
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1 1 1

T
1 1 2

( ,0), (0, ) : ( ,0)
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n

t t

S t k t

k I t
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x x R x
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where M is a given matrix, 1( ,0)tx , 1(0, ) nk ∈x R  are 
elements in the set and expressed as the form behind 
the colon. 

The state feedback control is usually impractica-
ble, so we introduce the following dynamic 2D output 
feedback controller which is represented by model 

c
2D ep F− −∑  for the 2D-FM system 2D ep F− −∑  in the 

form of 
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where c ( , ) nt k ∈x R  is the internal state of the con-
troller and { }c c c c 1,2, , ,i i i i i=   A B C D  are controller pa-

rameters to be determined. The 2D closed-loop error 
fault system 2D ep F− −∑  obtained (Fig. 1) by substitut-
ing controller (14) into system (12) is represented as 
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Accordingly, the boundary conditions of the 2D sys-
tem 2D ep F o− − −∑  are assumed as 

1 1
r r
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and the initial boundary conditions belong to the set 
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where [ ]diagM =   0M , r ( ,0)tx , r (0, ) nk ∈x R  are 
elements in the set and expressed as the form behind 
the colon. 

Denoting { }r rsup ( , ) : , , 1x x t k t k N t k=   + =     ≥ , 

we first give the definition of asymptotic stability for 
system (12). 

Definition 1 [25]  The uncertain 2D system (12) 
is asymptotically stable if rlim 0N x→∞ =  with zero 

input ( , ) 0r t k =  and ( , ) 0t kω = . 
Associated with 2D system (15) is the following 

cost function 
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Figure 1  Schematic diagram of the structure of a closed-loop system 
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where T T T
r r( , ) ( , ) ( 1, 1)t k t k x t k⎡ ⎤= + −⎣ ⎦xϕ , 1 0>U , 

2 0>U , 3 0>U , and c ci i i⎡ ⎤= ⎣ ⎦K D C C . 
Some definitions are introduced to establish a 

procedure for the design of updating law ( , )t hr , 
which guarantees the closed-loop system robust stable 
and preserving an adequate control performance. 

Definition 2  For any bounded boundary condi-
tions satisfying Eq. (16b), all admissible uncertainties 
and any admissible actuator failures, if there exists a 
controller ( , )t k∗r  and some specified constant J ∗  
such that the state of the resulting closed-loop system 
(15) with ( , ) 0t k =ω  satisfies rlim 0N x→∞ =  and its 

cost function Eq. (17) satisfies J J ∗≤ , then J ∗  is 
said to be a fault-tolerant guaranteed cost, ( , )t k∗r  is 
said to be a fault-tolerant guaranteed cost control law 
for the uncertain 2D system (12), and the closed-loop 
system 2D ep F o− − −∑  is called a 2D-fault-tolerant guar-
anteed cost control system. 

Definition 3  Control law ( , )t k∗r  is a robust 
H∞  fault-tolerant guaranteed cost control law for the 
uncertain 2D system (12), if the following conditions 
hold and there exists a scalar 0γ > , for all admissible 
parameter uncertainties and any admissible actuator 
failures, 

(1) The resulting closed-loop system (15) with 
( , ) 0t k =ω  is asymptotically stable; 

(2) With the zero initial condition, the controlled 
output ( , )t kz  satisfies 
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(3) In the case of ( , ) 0t kω = , the cost function 
for the resulting closed-loop system (15) satisfies 
J J ∗≤ .  

Lemma 1 [18]  The 2D closed-loop system 
2D ep F o− − −∑  is 2D-fault-tolerant guaranteed cost control 

if there is a function ( )V i  that satisfies the following 
conditions: 
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3.2  Reliable guaranteed cost controller design 
and system structure 

In this section, we will design a reliable updating 
law ( , )t kr  such that the resulting closed-loop system 
(15) is 2D-fault-tolerant guaranteed cost control and 
the cost function of closed-loop system is lower than a 
specified upper bound.  

Theorem 1  Consider 2D system (15) with 
( , ) 0t k =ω , the initial conditions Eq. (16) and the cost 

function Eq. (17), for some given positive scalars t 
and 1t , the robust guaranteed cost control problem of 
2D system (9) is solvable if there exist positive defi-
nite matrices 0>S , 0>Y , 0i >U , ciD , iZ , iZ  and 
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where P
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

S I
J

I Y
, 

c

ˆ
i

i i i
A

i i i i

⎡ ⎤+
= ⎢ ⎥

+ +⎣ ⎦

SA Z C ZJ
A B D C AY B Zβ β

, 

ciK i i⎡ ⎤= ⎣ ⎦J D C Z , 

E t
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

SE
J

E
, 

F ⎡ ⎤= ⎣ ⎦J F FY , 

and B t
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

SB
J

B
, the asterisk notation (∗ ) represents 

the symmetric element of a matrix. 
Furthermore, system matrices ciA , ciB , ciC , and 

ciD  of the output feedback controller can be solved as 
1 T T 1

c 12 c 12 12
1

c 12 c
T 1

c c 12

c c

ˆ( )( )

( )

( )( )

i i i i i

i i i

i i i

i i

− −

−

−

⎧ = − − −
⎪

= −⎪
⎨

= −⎪
⎪ =⎩

A P Z SAY Z CY SB C P P

B P Z SB D

C Z D CY P
D D

β

β
 

(19) 
The cost function Eq. (17) of the resulting closed-loop 
2D system 2D ep F o− − −∑  (15) satisfies 

T T
1 2 max 1 1 max( ) ( ) ( )J J t t r t rλ λ∗ = − +≤ M SM M SM  

(20) 
Proof  Assume that there exist positive definite 

symmetric (PDS) matrixes P and Q such that 
T
1

1 2T
2

T T
1 1 3 1 1 3 2

T T
2 3 1 2 2 3 2

( )

0

k
k

⎡ ⎤− −⎡ ⎤ ⎡ ⎤+ +⎢ ⎥ ⎣ ⎦⎢ ⎥−⎣ ⎦ ⎢ ⎥⎣ ⎦
⎡ ⎤+

<⎢ ⎥
+⎢ ⎥⎣ ⎦

0
0

�
� �

�
AP Q

P A A
Q A

U K U K K U K

K U K U K U K
   (21) 

holds for all admissible actuator failures that satisfy 
Eq. (3), in which 1 1 a ( , )k t k= +� � �A A Δ . Because P and 
Q are PDS matrixes, all functions ( )V iP , ( ) 0 ( )V − > iP Q  

and ( )V iQ  satisfy conditions (1) and (2) of Lemma 1. 
Because ( , ) 0t k =ω , we have 

T
1

1 2T
2

r r r

r

r

r

r

[ ( 1, )] [ ( , )] [ ( 1, 1)]

( , )
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0
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P P Q Q

A
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Q

x x x

x
x

x
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(22) 
From Eq. (21), we obtain 

T
1

1 2T
2

r r

r r

T T T
1 1 3 1 1 3 2r r

T T
r r2 3 1 2 2 3 2

( , ) ( , )
( 1, 1) ( 1, 1)
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k
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t k t k
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− <⎜ ⎟ ⎜ ⎟+ − + −⎝ ⎠ ⎝ ⎠
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0
0
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�

P QA
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x x
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               (23) 

Since 
T T

1 1 3 1 1 3 2
T T
2 3 1 2 2 3 2

0
⎡ ⎤+

>⎢ ⎥
+⎢ ⎥⎣ ⎦

U K U K K U K

K U K U K U K
, the fol-

lowing inequality is effective 

P r r r( ( 1, )) ( ( , )) ( ( 1, 1))V t k V t k V t k−+ < + + −P Q Qx x x  

(24) 
Here V V V V−Δ = − −P P Q Q  denotes the function incre-
ment from a 2D view of energy transfer. As described 
in [17], the Lyapunov functional value clearly de-
creases along the state trajectories. From Definition 1, 

rlim ( , ) 0
t k

x t k
+ →∞

→  holds. Consequently, system (12) 

is asymptotically stable. Moreover, condition (3) in 
Lemma 1 is satisfied, which implies that the resulting 
closed-loop system (15) is fault-tolerant guaranteed 
cost control. 

According to Lemma 3 in [26] and Schur    

complements [27], a sufficient condition for Eq. (21) is 
T T
1 1
T T
2 2

1
3

1
1

1
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1
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1
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ε
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0 0 0 0

0 0 0 0

0 0 0

0 0
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Q A P K I
P

U

U

U
I

I

 

(25) 

Define 1t=P P , 1 1t=Q P , 1
1
−= PΩ , and pre- and 

post-multiply the left-hand side matrix in Eq. (25) by 
the matrix diag[ , , , , , , ,      ]I I I I IΩ Ω Ω  separately. Par-
tition Ω  and 1−Ω  as follows 
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12
T

12 22

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

Y P

P P
Ω ,  121

T
12 22

− ⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦

S P

P P
Ω  

where S, Y, 12P , 12
n n×∈P R , and 12 12

T = −P P I YX . 

Let T
12

⎡ ⎤
= ⎢ ⎥

⎣ ⎦0

S I
J

P
, T

12

⎡ ⎤
= ⎢ ⎥

⎣ ⎦0

I Y
J

P
, and we have 

 Ω =J J , T ⎡ ⎤
= ⎢ ⎥

⎣ ⎦

S I
J J

I Y
Ω , 

T

c

0 c 0

0 c 0

ˆ
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, 

T
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⎢ ⎥⎣ ⎦
� F

J F
YF

Ω , T ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
� SE

J E
E

, in which 

T T
c 12 12 c 12

ˆ
i i i i i= + + +Z SAY Z CY SB C P P A Pβ , 

T
c c 12i i i= +Z D CY C P  and c 12 ci i i= +Z SB D P Bβ . 

Meanwhile, pre- and post-multiply the nonsingular 

matrix Tϒ  and diag diag[ ]=         J J J I J J I Iϒ  in Eq. 

(25), and let T 1
i i
− =J U J U  ( 2,3i = ). By using Lemma 3 

in [26] and Schur complements [27], Eq. (25) is equiva-
lent to Eq. (18). 

Since inequality (21) holds, we have 

1 2 1 2
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    (26) 

It follows from Eq. (26) and the definitions Q and P that 
2 1

1 1 1 1
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For 1N , 2N → ∞ , it follows from Definition 1, the definitions P and Q, and Eq. (16) that 
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This completes the proof. 
Theorem 2  Consider 2D system (15), initial 

conditions (16) and cost function (17). For some given 
positive scalars t and 1t , the robust H∞  fault-tolerant 
guaranteed cost control problem of 2D system (15) is 

solvable via a 2D output feedback controller Eq. (14) 
with system matrices satisfying Eq. (19) if there exist 
matrices 0>S , 0>Y , 0i >U , ciD , iZ , iZ  and ˆ

iZ  
( 1,2i = ) and positive scalars 1, 2)k kε ( =   and γ such 
that the following LMI holds 
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where T T T⎡ ⎤= ⎣ ⎦GJ G S G , [ ]T =HJ H HY , and others 
are designed in Theorem 1. In this case, the robust H∞  
reliable guaranteed cost control law can be still chosen 
as Eq. (19) and the corresponding cost function of the 

resulting closed-loop 2D system 2D ep F c− − −∑  (15) still 
satisfies Eq. (20). 

Proof  Assume that there exist PDS matrixes P 
and Q, a scalar 0γ >  such that 

T T T1 T
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  (30) 

holds for all admissible actuator failures satisfying  
Eq. (3). For any nonzero 2( , ) {[0, ], [0, ]}t k l∈ ∞  ∞ω , we 
define 

1 T T
1 r[ ( , )] ( , ) ( , ) ( , ) ( , )J V t k t k t k t k t kγ γ−= Δ + −x z z ω ω  

(31) 
where 

r r
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According to Eq. (15), we have 
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(33) 
For any integers 1M , 2 0M >  according to the as-
sumption that all boundary conditions of system 

2D ep F o− − −∑  are zero, with Eq. (32), we have 
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(34) 
Hence, for any nonzero 2( , ) {[0, ], [0, ]}t k l∈ ∞  ∞ω , 
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x
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i.e., 2D 2e 2D 2e( , ) ( , )t k t kγ
− −

≤z ω . Moreover, along 
the lines similar to the proof of Theorem 1, it is easy 
to obtain Eq. (29). 

3.3  Procedure design 

For any 1 1N r≥  and 2 2N r≥ , the boundary 
conditions satisfy Eq. (16) and from Theorem 1, there 
exists 0β >  such that the cost bound Eq. (20) leads to 

( )2 1 1 1J r t t r tβ β− +≤            (36) 

where 
T

0β⎡ ⎤−
<⎢ ⎥

−⎣ ⎦

I
S

Θ
Θ

             (37) 

In order to obtain the output controller and achieve as 
far as possible the least guaranteed cost value J ∗ , we 
have to solve the following optimization problem 

( )2 1 1 1min r t t r tβ β− +  

s.t. 1 0t t− > , 1 0t > , (18), (37)    (38) 
With a similar line as in [28] to propose a nonlinear 
minimization problem involving LMI conditions and 
utilize the linearization method [29], when positive 
scalars t and 1t  are given, the ideal values of which 
can be obtained by using the following method: given 
larger t and 1t , solve inequality (18); if there is a fea-
sible solution, given smaller t and 1t , go on; otherwise 
stop; the above optimization problem is a convex op-
timization problem, which can be solved by the solver 
Mincx in the LMI toolbox. 

Similar to Theorem 1, the optimization problem 
of Theorem 2 is expressed as 

( )2 1 1 1min r t t r tβ β− +  

  s.t. 1 0t t− > , 1 0t > , (29), (37)     (39) 
In this paper, in order to obtain the minimum guaran-
teed cost bound, there is no constraint to γ. The value 
of γ can be obtained by solving Eq. (29). 

4  ILLUSTRATION 

In this section, injection molding, a typical batch 
process, will be used as example for illustration. In-
jection molding mainly consists of 3 phases: filling, 
packing, and cooling [9]. For the packing/holding 
phase, nozzle pressure is a key process variable that 
should be controlled to follow a preset profile to ensure 
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product quality and consistency from cycle to cycle. 
Variations of working conditions may make injection 
molding particularly packing-holding viewed as a 
batch process with uncertainties.  In each cycle, the 
transition of different phases leads to uncertain initial 
values of the nozzle pressure. This makes the conven-
tional ILC inapplicable. Moreover, the control per-
formance is poor when a slow hydraulic valve is used. 
Pure feedback control cannot improve control per-
formance from cycle to cycle. It is necessary to design 
a controller that can improve both the performance 
over time and the tracking performance from cycle to 
cycle. Based on the open-loop test and analysis, to 
identify the nozzle packing pressure response to the 
hydraulic control valve opening, the state-space mode 
is considered as the state variables [20] 

[ ]

P
1.607 0.6086

: ( 1, ) ( , )
1 0

1.239
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0.9282
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t k t k
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⎣ ⎦⎝ ⎠
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⎢ ⎥−⎣ ⎦

           =

x A x

u

y x

Δ

 

(40) 
where batch-to-batch time-varying uncertainties of  
the state transfer matrices are expressed as =AΔ  

11 2

2

00.03 0.04 0.03 0.04 1 0
00 0 0 0 0 1
δδ δ

δ
⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

, 

1, 1, 2i iδ   =  ≤ . Assuming that there exists an unknown 
actuator failure α, we know that 0.8 1α α α= =≤ ≤ . 
Using Eq. (6), 0.9β =  and 0 0.1β =  are obtained. 
Here the set-point takes the form of 

d ( ) 15y t = ,  (for 0 100t ≤ ≤ )     (41a) 

d ( ) 30y t = ,  (for 100 200t ≤ ≤ )    (41b) 
The initial state satisfies condition (16) for 1 2 10r r= = , 
and belongs to the set S where 

1 0 0
0 1 0
0 0 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Θ              (42) 

We choose the weighting matrices 

1 2= =U U Θ ,  3 1U = .         (43) 
Solving the problem described by Eqs. (38) and (39), 
when 0.75t =  and 1 0.2t = , the corresponding control-
lers are achieved for repetitive perturbations and non-
repetitive perturbations, as shown in Tables 1 and 2. 

The least upper bounds of the corresponding 
closed-loop cost function are J ∗ = 1.0232×104 and 
J ∗ = 1.244×104. To show tracking results, we only 
choose the ILRGCC in Table 1, i.e., repetitive pertur-
bations, to stabilize system (40), and use the output 
tracking error in terms of root-sum-squared-error 
(REES) criterion. The results are shown in Figs. 2 and 
3, here 1,2,3{ : 1}i i iδ δ =<  are assumed to vary with 
time randomly within [0, 1]  . The tracking perform-
ance is improved from cycle to cycle, although after 
the fault occurs, the tracking performance experiences 
degradation, which can be also seen by the least cost 
function J ∗ . The tracking performance can achieve a 
perfect level again some cycles later, even return to 
the original level. 

Table 1  Design results for repetitive perturbations ( 0.75t = , 1 0.2t = ) 

 Aci Bci Cci Dci 

i = 1 
0.3036 0.0000 00.0000
3.4010 0.8005 0.0000

10.6030 3.8231 0.1590

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥− −⎣ ⎦

 
0.1500 0.0000
1.1552 1.2616
8.1105 5.4750

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

 [ ]2.5300 0.7030 0.0000− −  [ ]1.5604 1.4174−  

i = 2 
0.1097 0.0000 0.0000
0.2801 0.0000 0.0000

10.0006 0.0300 0.0225

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎣ ⎦

 
0.0400 0.6488
0.1036 1.0772
3.0751 2.0033

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥− −⎣ ⎦

 [ ]0.0000 0.0000 0.0010−  [ ]0.0000 0.5370−  

Table 2  Design results for nonrepetitive perturbations ( 0.75t = , 1 0.2t = , 20.5γ = ) 

 Aci Bci Cci Dci 

i = 1 
0.2001 0.0000 0.0000
3.4003 0.9000 0.0000

6.7857 0.0000 0.0137

− − −⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

 
0.0000 0.1481
1.5032 1.1952
18.1167 5.4032

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

 [ ]2.2530 0.5911 0.0000−  [ ]1.7544 1.4165−  

i = 2 
0.1244 0.0000 0.0000
0.2933 0.0000 0.0000
7.4879 0.0001 0.0600

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥− −⎣ ⎦

 
0.0000 0.7012
0.0000 1.2072
1.0751 16.1344

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥− −⎣ ⎦

 [ ]0.0000 0.0000 0.0000− −  [ ]0.0000 0.5533− −  
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Figure 3  Tracking performances in repetitive case 

5  CONCLUSIONS 

By an LMI framework, the optimal fault-tolerant 
guaranteed cost control problem via 2D-ILRGCC is 
proposed for a batch process with actuator failures. The 
process is transformed to an equivalent 2D-FM model, 
based on which relevant concepts on the ILRGCC 
design is presented. Through solving the correspond-
ing LMI constraints, the controller is explicitly for-
mulated, with preserving the least guaranteed cost and 
H∞  performance index. The proposed 2D-LRGCC 
can guarantee control performance improvement not 
only along the time direction but also along the cycle 
direction, even with actuator failures. An injection 

pressure control is developed to demonstrate the ef-
fectiveness and merits of the proposed ILC method. 
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