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Al2O3/(EG + H2O), ZnO/(PEG + H2O), ZnO/PEG, and TiO2/EG were estimated from the extended Tao–Maso
equation of state, togetherwith the Pak and Cho equation in various temperature, pressure, and volume fraction
The equations of state usingminimum input data and density at room temperature as scaling constants, were de
veloped to estimated densities of the above mentioned nanofluids. Furthermore, the artificial neural networ
plus principal component analysis (PCA) technique (with 20 neuron in hidden layer) was performed over th
whole range of available conditions. The AADs of the calculated molar densities of all nanofluids using the EO
and ANN at various temperatures and volume fractions are 1.11% and 0.48%, respectively. In addition, the hea
capacity and isentropic compressibility of the abovementioned nanofluids are predicted using obtained densitie
of EOS with the Pak and Cho equation.
© 2016 The Chemical Industry and Engineering Society of China, and Chemical Industry Press. All rights reserved
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1. Introduction

Nanofluids are two phase mixtures consisting of solid nanoparticle
with sizes varying generally from 1 to 100 nm dispersed within hea
transfer liquids such as water, ethylene glycol, propylene glycol, an
light oils. Thermal properties and stability of nanofluids have been
hotly discussed topic during the last two decades due to their potentia
for application in heat transfer [1].

Nanofluids, firstly described by Choi [2] and other researcher
discover a new type of heat transfer fluid superior to conventiona
microparticle fluids in terms of thermophysical properties [2
Moreover, enhancing heat transfer eliminates problems arising from
microparticle fluids. Therefore, nanofluids have valuable application
in practical heat transfer processes due to their high potential fo
enhancement of heat transfer. The thermophysical properties o
nanofluids, such as thermal conductivity, viscosity, and density, ar
important in heat transfer application involving heat transfer fluid fo
thermal engineering [3].

Among the various thermophysical properties of nanofluids, mos
attention has been dedicated to thermal conductivity and viscosit
[4–8], while less attention has been paid to other properties such a
density (ρ), specific heat capacity (Cp), and isentropic compressibilit
h
c
e

ring Society of China, and Chemical
(Ks). Thermal conductivity and viscosity are not adequate to calculat
theoretical heat transfer coefficient. Density, specific heat, and isentro
pic compressibility are also very significant for heat transfer computa
tions. Therefore, these properties should perfectly determine becaus
of their influence on nanofluid flow and heat transfer characteristic
[9]. On the other hand, experimental evaluation of nanofluids suffer
from limitations such as complexities in preparing monodispers
suspensions; and methodical problems in measuring particle size, con
centration, and the homogeneity of its solution. As a consequence, th
ranges of the considered variables are also limited. Hence a few densit
measurements have been presented for various nanofluids at differen
situations [10], while suggesting the reported theoretical correlatio
for the evaluation of nanofluids density is based on simple model.

Earlier, Ihm–Song–Mason equation of state (ISM EOS) [11] and Tao
Mason equation of state (TM EOS) [12] were extended to fluid and flui
mixtures [13–21]. In addition, the applications of equation of state an
artificial neural networks approaches [19,22] were studied to approx
mate the properties of pure polymers. Generally, the artificial neural ne
work (ANN) is a powerful and successful method for complex nonlinea
systems due to unique advantages such as high speed, simplicity, an
large capacity which reduce engineering attempt. In recent years, AN
modelling has been successfully used for predicting of thermophysica
properties of pure and mixture fluids [22–26].

This research is focused on the capability of both TM EOS (wit
the Pak and Cho equation) and the ANN to estimate thermodynami
properties of nanofluids in different conditions. As a final point, th
Industry Press. All rights reserved.
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efficiency of these approaches is compared with experimental dat
and an experimental Pak and Cho equation.

2. Theory

2.1. Tao–Mason equation of state

The common equations of state are based on the van der Waal
family of cubic equations, the extended family of virial equations, o
equations basedmore strongly on the results from statistical mechanic
and computer simulations [27–29]. The TM EOS belongs to the latte
category. Tao and Mason expressed a perturbed correction term tha
has an effect on the attractive forces, and combined it with the Ihm
Song–Mason (ISM) equation of state [11] to present an advance
equation of state (TMEOS) [12]. This equation of state for purematerial
is as follows:

P
ρKT

¼ 1þ B2−αð Þρþ αρ
1−λbρ

þ A1 α−Bð Þbρ2
e

κTC
T −A2

� �
1þ 1:8 bρð Þ4

ð1

where

A1 ¼ 0:143
A2 ¼ 1:64þ 2:65 e K−1:093ð Þ−1

h i
Þ ð2

κ ¼ 1:093þ 0:26 ω þ 0:002ð Þ12 þ 4:50 ω þ 0:002ð Þ
h i

ð3

where, ω, λ, ρ, Tc, and KT are the Pitzer acentric factor, an adjustabl
parameter, number density, critical temperature, and usual meaning
Also, B2, α and b are the second virial coefficient, the scaling paramete
and the effective van der Waals co-volume.

The TM EOS requires usage of the second virial coefficient (B2) i
company with the parameters α, and b. It should be mentioned tha
knowledge of experimental second virial coefficient data is adequat
to calculate values of the other two temperature-dependent parame
ters, if the intermolecular potential is not accessible [12]. In this case
there are numerous correlation schemes, typically based on th
corresponding state principal that leads to the computation of th
second virial coefficient.

Tao and Mason formulated α, and b in terms of the Boyle tempera
ture (TB) and the Boyle volume (vB) [12]. However, the B2 values ca
be calculated from the Tsonopolous correlation [30] in the absence o
sufficient experimental data.

B2
PC

RTC

� �
¼ f 0ð Þ Trð Þ þω f 1ð Þ Trð Þ ð4

f 0ð Þ Trð Þ ¼ 0:1445−
0:330
Tr

−
0:1385

T2
r

−
0:0121

T3
r

ð5

f 1ð Þ Trð Þ ¼ 0:0637þ 0:331

T2
r

−
0:423

T3
r

−
0:008

T8
r

ð6

In this project, to attain higher accuracy, a corresponding stat
correlation was examined in order that TM EOS might be applied t
nanofluids. In this respect, the following correlation equation for B
using a new scaling parameter with minimum input (such as mola
density at the room temperature) has been extended. Thi
correlation for second virial coefficient is presented as follows:

B2ρr ¼ 1:033−3:0069
298:15

T

� �
−10:588

298:15
T

� �2

þ 13:096
298:15

T

� �3

−9:8968
298:15

T

� �4

ð7

where ρr is density at room temperature.
Tao and Mason's observation shows that the dimensionless quanti

ties α/υB and b/υB as almost common functions of the reduced temper
ature (T/TB) can be calculated from the exponential formulas based on
LJ (12–6) potential [12]. At this point, the scaling factors (TB and υB) ar
the Boyle temperature and Boyle volume, which can be stated based o
the roomparameters. The empirical equations given in [12] forα/υB an
b/υB as, a function of T/TB can be rescaled by 298.15 K and ρr, tempera
ture and density in room point, instead of TB and υB as Eslami [31
Therefore, the input parameter decreased, and this parameter easily ob
tains in contrast to Boyle parameters or boiling parameters.

αρr ¼ a1e−c1 T
298:15ð Þ þ a2 1−e−c2= T

298:15ð Þ1=4
� �

ð8

bρr ¼ a1 1−c1
T

298:15

� �� �
e−c1 T

298:15ð Þ þ a2 1− 1þ c2

4 T
298:15

� 	1=4
" #

e

−c2
T

298:15ð Þ1=4
( )

ð9

where the constants a1, a2, c1, and c2 are −0.0860, 2.3988, 0.5624, an
1.4267, respectively. In the previous study, TM EOS was extended t
the refrigerant mixtures with following equation [19].

P
ρKT

¼ 1þ ρ
X

ij
xix j B2ð Þij−αij

� �
þ ρ

X
ij

xix jαijGij þ ρ
X
ij

xix j I1ð Þij ð10

The Gij term is the pair distribution function and was calculated b
Ihm et al. [11]:

Gij ¼
1

1−η
þ bib j

bij

� �1=3 ρ
X

K
xKb

2=3
K λK−

1
4

� �
1−ηð Þð1−ρ

X
K
xKbKλKÞ

ð11

where η is the packing fraction of the mixture:

Φmix ¼
ρ
X

K
xKbK

1þ 1:8ρ4
X

K
xKbK

� �4 ð12

ζmix ¼ 0:143 expðKmixTcmix=T−A2mix½ � ð13

that

Tcmix ¼ ∑KxKTcK ð14

where Tcmix is the traditional pseudocritical temperature.
In the present method, the second virial coefficient and the othe

two temperature-dependent parameters evaluation can be extende
to mixtures using simple geometric mean of liquid density at th
room temperature; i.e.,

ρbp

� �
ij

−1=3
¼ 1=2 ρbp

� �
i

−1
3 þ ρbp

� �
j

−1
3

� �
ð15

The adjustable parameter (λ) obtains from volumetric properties a
high temperature and pressure and authorizes the whole procedure a
self-correcting.
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3. ANN Modelling

The artificial neural network (ANN) is the nonlinear mathematica
method that attracts the greatest interest due to its simplicity,flexibilit
and availability for various training algorithms, as well as its larg
modelling capacity [32–34]. An artificial neural network, which
derived based on the activity process of the human brain, has hithert
been employed for modelling by many scientific disciplines [33–36
Several applications and good descriptions of the artificial neura
network (ANN) were presented in previous publications [37,38].

The ANN forms the input layer (independent variables), the out
put layer (dependent variables), and one or more neuron layer
called hidden layers can be located between them. The structure o
an ANN is described by the number of its layers, the number o
neurons in each layer, and the nature of learning algorithms an
neurons transfer functions. The important elements of a neura
network are the neurons, which are organized in input and outpu
layers of hidden layers (Fig. 1).

3.1. Principal component analysis

Principal component analysis (PCA) is a statistical method tha
changes an orthogonal transformation, to convert a set of observation
of possibly correlated variables into a set of values of linearly uncorrela
ed variables called principal components. It is a way of recognizin
patterns in data, and expressing the data in such a way as to highligh
their similarities and dissimilarities. While patterns in data can b
hard to find in data of high dimension, the PCA is a great tool fo
analysing data. The other key benefit of the PCA is that once you hav
found these patterns in the data, you can compress the data by mean
of reducing the number of dimensions without much loss of informa
tion. Principal components are guaranteed to be independent if th
data set is jointly normally distributed. The PCA is sensitive to th
relative scaling of the original variables [39].

Finally, the PCA was used to make a classifier system more effectiv
and it is based on the assumption that most information about classes
Input layer Hidden

S n

Wij

In
pu

t v
ar

ia
bl

es

T

P

d

ρbf



Fig. 1. The topology
contained in the directions, including which the variations are th
largest. The most common derivation of the PCA is in terms of
standardized linear projection, which maximizes the variance in th
projected space [40]. The details of the PCA are stated in [41].

3.2. Network training and selection of the best network architecture

Themost regular neural network technique for solving difficulties
multilayer perceptrons (MLP). TheMLP discovers the data pattern usin
algorithms known as “training”, these algorithmsmodify weights of th
neurons according to the error between the values of actual outpu
and target output that provide nonlinear regression between input
and outputs variables and are extremely useful for recognizing pattern
in complex data. An example of training algorithms is the back
propagation algorithm that is widely used to train ANN in variou
applications.

Two transfer functions that are used in the hidden layer and outpu
layer are “Tansig” and “Purelin”, respectively. The back propagation a
gorithm of Levenberg–Marquardt (trainlm) was applied to determin
optimal net structure. The trial and error approach ismost basicmetho
of training a neural network. The number of hidden layers is to be se
lected depending on the complexity of the problem but, generally, on
hidden layer is satisfactory for modelling most of the problems. In th
method, firstly the number of hidden layers considered one and in th
next step, in the trial and error approach, the number of neurons i
the hidden layer is varied one by one to attain the desired objectiv
function outputs. This trend is continued to find the number of neuron
that leads to the lowest error for the testing subset and is reported as th
optimum number of neurons in the hidden layer.

The mathematical definition of the error criteria, including averag
deviation percentage (AAD) and correlation coefficient (R2) value
were given as below:

AAD ¼ 1
N
∑N

i¼1
ρexp
i −ρcal

i

ρexp
i
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R2 ¼
XN

i¼1
ρexp
i −�ρ

� 	2−XN

i¼1
ρexp
i −�ρcal

i

2

XN

i¼1
ρexp
i −�ρ

� 	2 ð17

4. Results and Discussion

In this project, the density, specific heat capacity, and isentropi
compressibility (Ks) of some nanofluids such as Sb2O5, SnO2

(EG + H2O), ZnO/(EG + H2O), Al2O3/(EG + H2O), ZnO/(PEG + H2O
ZnO/PEG, and TiO2/EG were estimated from the extended TM EOS a
various temperatures and volume fractions. In addition, the artificia
neural network with PCA technique has been utilized to compute th
densities of the aforementioned nanofluids as a function of the temper
ature, volume fraction of nanoparticle, diameter of nanoparticle, and th
densities of base fluids and ranges of input–output variables for eac
nanofluid are given in Table 1.
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Table 1
Summary of the input–output dataset characterization

Nanofluids Temperature/K Volume
fraction

Density base
fluids/mol·L−1

Density
nanofluids/
mol·L−1

ZnO/(EG + H2O) 273.15–323.15 0.0006–0.004 23.66–25.51 24.57–25.88
Al2O3/(EG + H2O) 273.15–323.15 0.0008–0.006 23.73–24.99 23.87–24.69
Sb2O5,SnO2/(
EG + H2O)

273.15–323.15 0.0035–0.0180 25.25–29.88 25.20–29.45

ZnO/PEG 293.15–318.15 0.001–0.340 18.45–18.80 18.44–18.52
ZnO/(PEG + H2O) 293.15–318.15 0.001–0.354 14.28–26.34 14.25–26.11
TiO2/EG 283.15–343.15 0.0031–0.0088 17.22–18.39 17.56–18.96

Table 2
Coefficients in Eq. (19)

Nanofluids a b c × 10−3 d × 10−6

EG 1.9918 −0.0165 0.05643 0.0639-
PEG 0.5363 −0.0003 0.0292 4.9939
H2O 0.8615 −0.0033 0.0097 −0.0102

0

0.08

0.16

0.24

0.32

0.40

0.48

0.56

1 3 5 7 9 11 13 15 17 19 21

A
D

D
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Num of neroun

AAD train
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Fig. 2. Effect of the number of hidden layer neurons on AAD.
Experimental densities for Sb2O5, SnO2/(EG + H2O), ZnO
(EG + H2O), and Al2O3/(EG + H2O)were obtained from Vajjha an
Mahagaonkar [42]. Furthermore, the experimental densities for ZnO
(PEG+H2O) and ZnO/PEGwere attained from [43] and the experimen
tal densities for TiO2/EG were determined from [44].

The equation for the density of two-phase mixtures for particles o
micrometre size is available in the literature on slurry flows [45]. Pa
and Cho [46] adopted the same equation for nanometre sized particle
which is expressed by the formula

ρnf ¼ ρPφþ ρbf 1−φð Þ ð18

where ng is the density of the nanofluid, ρp is the density of the particle
φ is the particle volume concentration, and ρbf is the density of the bas
fluid. Pak and Cho conducted the experiment at only one temperatur
(298 K) for γ-Al2O3 and TiO2nanofluids up to 4.5% volume concentra
tion to verify Eq. (4).

As abovementioned, the experimental evaluation of nanofluids hav
many limitations, such as complexities in preparing mono-dispers
suspensions, methodological problems in measuring particle size
concentration, and the homogeneity of its solution. Hence, severa
density measurements have been presented for various nanofluids i
different situations [10]. Therefore, novel approaches such as equatio
of state and artificial neural networks are efficient in predicting th
density and other thermodynamic properties of nanofluids, based o
available data.

In this investigation, the TM equation of statewas used to determin
the density of base fluids. Thenwe replaced the density of the base flui
in the Pak and Cho [46] equation and introduced a new equation of stat
to determine the density of nanofluids for the first time.

Extension of statistical, mechanically-based equation of state fo
pure and mixed liquids requires preliminary modifications of the TM
EOS. In the beginning, the second virial coefficient was develope
using the density of liquid at room temperature that can simply b
measured in contrast to the critical parameters. Consequently, th
number of input parameters in the Tsonopolous'correlation [30
(critical temperature, critical pressure, and acetric factor) are reduce
to one parameter, including density at room temperature (ρr).

Besides, kin Eq. (2) is aweak function of the acentric factor so that ki
approximated to 1.093 and A2 was estimated to 1.64 [47]. Then, the pa
rameters α and b were correlated by means of Eqs. (8) and (9)
respectively. In both equations, the input parameters (themolar densit
at room temperature) are more available than the Boyle temperatur
and volume, and these modifications lead to a decrease in the numbe
of input parameters of B2, α and b from five (including critical tempera
ture, critical pressure, acentric factor, Boyle temperature, and Boyl
volume) to one (molar density at room temperature).

In addition, the parameter of λ for pure base fluid was adjusted b
the nonlinear regression method as follow:

λ ¼ aþ bT þ cT2 þ dT3 ð19

where the parameters that were used for calculation of λ are listed i
Table 2. After that, with these modifications using Pak and Cho's [46
equation, the densities of nanofluids can be computed.
The MLP is trained, validated, and tested at random with 70% (19
data points), 15% (43 data points), and15% (43 data points), respectively

At first, a set of observations are converted into a set of values o
linearly uncorrelated variables with a statistical method: namely
principal component analysis (PCA). The number of principal compo
nents variable in this work is equal to the number of original variable
but the variables values of linearly uncorrelated.

In the second step of the training procedure, all data points produce
from PCA were scaled to the range of [0, 1] as follows:

Output ¼ input−min inputð Þ
max inputð Þ−min inputð Þ � 1þ 0 ð20

The possibility of over-training is a problem in the ANN, and can b
overcome by suitable selection of the number of neurons in the hidde
layer. The numbers of hidden neurons were determined by trial an
error and were begun with two neurons in the hidden layer, with th
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number of neurons increased regularly. The performance of the net
work in training phase should increase with the increase in th
number of neurons; at the same time as the performance of the networ
in testing data phase leads to the optimumvalue of hidden neurons (se
Fig. 2). In this project, the mean square error (MSE) was chosen as
compute of the performance of the neural network. The net wit
one hidden layer (20 neurons) and with a mean square error o
1.12 × 10–5 leads to the most excellent prediction in Fig. 2. Fig.
shows the progress of training, validation, and test errors as a functio
of the number of training epochs (based on an early stopping approach
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Fig. 4. Modelling ability of the optimized ANN to predict the effective densities of all
nanofluids suspension: (R2 = 0.999, AAD = 0.48%).
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Based on testing data, the optimized neural network model wa
used to predict the densities of nanofluids; the evaluation betwee
predictive values and experimental values is carried out and shown i
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Fig. 9. Deviation plot for the calculated density of Al2O3/(EG + H2O) from TM EOS, ANN
and Pak & Cho at different temperatures and two volume fractions (a: ϕ = 1% and b:
ϕ = 8%), compared with the experiment [42].
Fig. 4. The results of Fig. 4 demonstrate good agreement between th
predicted and the experimental values of densities of mentione
nanofluids with an absolute average error, AAD% = 0.48%, and hig
correlation coefficients, R2 = 0.999.

The error analysis of trained net over temperature variation for train
test, and validation point are presented in Fig. 5.

TM EOS was combined with Pak and Cho's equation to calculat
densities of TiO2/EG nanofluids and compare with experimental dat
[44] at different temperatures, pressures, and two volume fraction
(1.75% and 5%) (Fig. 6). The results show that these models have
good level of agreementwith experimental data [45]. The AAD of densi
ties of TiO2/EG from new EOS and the ANN with experimental data a
volume fraction 1.75% are 0.58% and 0.48%, respectively. In addition
the AAD at volume fraction 5% are 1.67% and 0.58%, respectively. Fig.
shows the deviation plot for the calculated density of ZnO/PEG from
new EOS and ANN at different temperatures and volume fractions com
pared with the experiment [43], and the AAD of these models from th
literature are 0.67% and 0.11%.

The deviation plot for the calculated density of ZnO/PEG+H2O from
TM EOS and ANN at different temperatures, volume fractions, and tw
mole fractions of PEG (0.062 and 0.15) compared with the experimen
[43]. The absolute average deviations of thesemodels from experimenta
data at mole fraction of 0.062 are 0.59% and 0.14%, respectively (se
Fig. 8a). Also, the AAD at mole fraction of 0.15 are 1.62% and 1.05%
respectively (see Fig. 8b).

The absolute average deviation from experimental data [42] for th
predicted densities of the three systems (Al2O3/(EG + H2O), Sb2O5

SnO2/(EG + H2O); and ZnO/(EG + H2O)) are calculated from new EOS
ANN, and experimental Pak and Cho, and are presented in Figs. 9–11
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Fig. 10. Deviation plot for the calculated density of Sb2O5, SnO2/(EG+H2O) from TM EOS,
ANN and Pak & Cho at different temperatures and two volume fractions (a: ϕ=1% and b:
ϕ = 5.8%), compared with the experiment [42].
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Fig. 11. Deviation plot for the calculated density of ZnO/(EG + H2O) from TM EOS, ANN
and Pak & Cho at different temperatures and two volume fractions (a: ϕ = 2% and b:
ϕ = 5%), compared with the experiment [42].

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

0.00 0.10 0.20 0.30 0.40

A
A

D
/%

T=293.15K

T=298.15K

T=308.15K

T=318.15K
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b: XPEG = 0.15), compared with the experiment [43].
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It should be stated that in the experimental Pak and Cho, densities of bas
fluids are obtained from experimental data, while in the first model th
densities of base fluids are computed from TM EOS. These figures show
that the ANN model is in good agreement with experimental data an
is superior to others. Also, the new EOS is better than the experimenta
Pak and Cho.

In this research, some thermodynamic properties such as hea
capacity and isentropic compressibility of nanofluids can are predicte
using the equations below:

Cp nfð Þ ¼
φ npð Þ � Cp npð Þ þ 1−φð Þρ bfð Þ � Cp bfð Þ

ρ nfð Þ
ð21

ks ¼ 1
du2 ð22

where d and u are density and speed of sound of nanofluid
respectively.

The deviation plot for the calculated heat capacity of ZnO/PEG a
different temperatures and volume fractions is compared with th
experiment [43] in Fig. 12. It can be seen from this figure that th
calculated heat capacity has good agreement with literature wit
AAD = 1.04%.

In addition, the plot of deviation of heat capacity of ZnO
(PEG + H2O) at different temperatures, volume fractions, and mol
fraction of PEG (0.06 and 0.15) is presented in Fig. 13, and the absolut
average deviations for these systems are 1.07% and 0.23%, respectively
As a final point, the calculated isentropic compressibility of ZnO/PE
from Eq. (22) at different temperatures and volume fractions,
compared with the experiment [43] and presented in Fig. 14. The AA
of this system is 0.65%.

The calculated isentropic compressibility of ZnO/PEG + H2O a
different temperatures, volume fractions, and mole fraction of PE
(0.06 and 0.15) is also compared with the literature [43] (see Fig. 15
and the AADs are 0.70% and 0.93%, respectively. Since the values o
AAD can establish the fact that the calculated values are more or les
close to the experimental data, it can be claimed that the new EOS ca
predict the experimental density and thermodynamic properties o
nanofluids with a high degree of accuracy.
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Table 3
Result of density prediction for all mentioned nanofluids

Nanofluids NP ΔT/K ΔP×10/MPa AAD
(EOS)/%

AAD
(ANN)/%

ZnO/(EG + H2O) 6 273.15–323.15 1 1.31 0.71
6 273.15–323.15 1 1.19 0.12
6 273.15–323.15 1 0.78 0.14
6 273.15–323.15 1 0.97 0.63
6 273.15–323.15 1 3.17 0.66
6 273.15–323.15 1 0.50 0.59

Al2O3/(H2O + EG) 6 273.15–323.15 1 1.86 0.23
6 273.15–323.15 1 1.49 0.24
6 273.15–323.15 1 1.08 1.08
6 273.15–323.15 1 1.60 0.22
6 273.15–323.15 1 0.59 1.40
6 273.15–323.15 1 3.05 1.12

Sb2O5/(EG + H2O) 6 273.15–323.15 1 0.67 0.15
6 273.15–323.15 1 0.11 0.09
6 273.15–323.15 1 0.34 0.17
6 273.15–323.15 1 0.45 0.12
6 273.15–323.15 1 0.62 0.06

ZnO/PEG 56 293.15–318.15 1 0.11 0.67
ZnO/(PEG + H2O) 48 293.15–318.15 1 1.62 1.05

48 293.15–318.15 1 0.59 0.14
TiO2/EG 15 283.15–343.15 1–450 0.58 0.45

15 283.15–343.15 1–450 1.67 0.58
Overall 284 273.15–343.15 1–450 1.11 0.48
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Fig. 14. AAD plot of the calculated isentropic compressibility of ZnO/PEG from TM EOS at
different temperatures and volume fractions, compared with the experiment [43].
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Table 3 contains the AAD of the calculated molar density of a
nanofluids using the EOS and ANN at various temperatures, pressure
and volume fractions. As is clear fromTable 3, inmost cases the accurac
of the calculated densities using the ANN are superior to new EOS bu
also that both of them are in agreement with experimental data. Th
AADs of new EOS and ANN are 1.11% and 0.48%, respectively.

5. Conclusions

In this work, the density, specific heat capacity, and isentropi
compressibility (Ks) of some nanofluids such as Sb2O5,SnO2

(EG + H2O), ZnO/(EG + H2O), Al2O3/(EG + H2O), ZnO/(PEG + H2O
ZnO/PEG, and TiO2/EG were estimated from the extended TM EO
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Fig. 15.AADplot of the calculated isentropic compressibility of ZnO/(PEG+H2O) fromTM
EOS at different temperatures, volume fractions and two mole fraction of PEG (a: XPEG =
0.06 and b: XPEG = 0.15), compared with the experiment [43].
together with the Pak and Cho equation at various temperatures
pressures, and volume fractions. The TM EOS was performed usin
minimum input (density of room temperature). Also, the artificia
neural network + PCA technique (with 20 neuron in hidden layer
was performed over the whole range of available conditions. Th
AADs of the calculated molar density of all nanofluids using the new
EOS and ANN at various temperature, pressure, and volume fraction
are 1.11% and 0.48%, respectively. In addition, the heat capacity an
isentropic compressibility of the aforementioned nanofluids wer
predicted using obtained densities of new EOS. The results showe
that these properties are in agreement with the literature.
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