
Chin. J. Chem. Eng., 15(4) 539—544 (2007)

Neural Network Nonlinear Predictive Control Based on Tent-map
Chaos Optimization*

SONG Ying(宋莹), CHEN Zengqiang(陈增强)** and YUAN Zhuzhi (袁著祉)
Department of Automation, Nankai University, Tianjin 300071, China

Abstract With the unique ergodicity, irregularity, and special ability to avoid being trapped in local optima, chaos
optimization has been a novel global optimization technique and has attracted considerable attention for application
in various fields, such as nonlinear programming problems. In this article, a novel neural network nonlinear predic-
tive control (NNPC) strategy based on the new Tent-map chaos optimization algorithm (TCOA) is presented. The
feedforward neural network is used as the multi-step predictive model. In addition, the TCOA is applied to perform
the nonlinear rolling optimization to enhance the convergence and accuracy in the NNPC. Simulation on a labora-
tory-scale liquid-level system is given to illustrate the effectiveness of the proposed method.
Keywords model-based predictive control, neural network, Tent-map, chaos optimization, nonlinear system

1 INTRODUCTION
Model-based predictive control (MPC) technique

is now popular and has been implemented success-
fully in several industrial processes[1] owing to its
special characteristics, such as the capabilities of
model-based prediction, rolling optimization, and
feedback tuning. Several versions of the MPC tech-
nique include dynamic matrix control (DMC)[2], gen-
eralized predictive control (GPC)[3], and so on. The
above techniques are fundamentally similar since all
are based on linear process modeling[4]. However,
because of the assumption of linearity of the unknown
system parameters, MPC encounters great difficulties
when confronted with a system that has high nonlin-
earity and complexity. Therefore, there are several
novel intelligent predictive controllers[5—7] to deal
with the complex nonlinear systems.

Recently, under the receding horizon principle
and MPC framework, attention has been focused on
nonlinear predictive control using a nonlinear model
describing the behavior of a system. As a mathemati-
cal model for the human brain, the neural network
(NN) has been commonly applied in most branches of
natural science, and not only the control systems field.
The nonlinear modeling capability of NN is well
documented[8,9]. Multi-layer feedforward neural
networks are the most extensively utilized NNs in
control and identification applications. For nonlinear
plants, the ability of the MPC to make accurate pre-
dictions can be enhanced if a neural network is used to
learn the dynamics of the plant instead of the standard
nonlinear modeling techniques. The neural-network-
based predictive control (NNPC) strategies have been
found to be effective in controlling a wide class of
nonlinear processes in the past[10—19]. In the NNPC,
the neural network will be used as the prediction
model of the nonlinear plant and the system perform-
ance is greatly dependent on the online optimization
procedure. Several algorithms were successfully im-

plemented in the NNPC system, such as the gradient
descent method[11—15] and the Newton-Raphson
method[16]. The Jacobian or Hessian matrix used for
solving the optimization is normally formulated in
terms of the structure of the neural network, i.e.,
weights and biases. To reduce the computational load
for a large predictive horizon, Noriega and Wang[17]
presented a recursive algorithm for calculating the
Jacobian matrix. However, these numerical optimiza-
tion methods usually provide local optim and require
the NNPC cost function which is differential and it is
still a complex procedure for calculating the Jacobian
or Hessian matrix even under some simplifications;
hence, the intelligent algorithms are more suitable for
optimizing in NNPC, such as the genetic algorithm
(GA)[18] and the particle swarm optimization
(PSO)[19].

Chaos is a kind of characteristic of nonlinear
systems, which is a bounded unstable dynamic be-
havior that exhibits sensitive dependence on initial
conditions and includes infinite unstable periodic mo-
tions. A chaotic motion can traverse every state in a
certain region (called the chaos space) by its own
regularity, and every state is visited only once, and
thus, there is no precise periodicity. Owing to the
unique ergodicity and special ability to avoid being
trapped in local optima, chaos has been a novel opti-
mization technique, and the chaos optimization algo-
rithm (COA)[20] is considerably higher than some
other stochastic algorithms.

In this article, a novel neural network nonlinear
predictive control strategy based on the new Tent-map
chaos optimization algorithm (TCOA) is presented.
The neural network, which is trained by the BP algo-
rithm with adaptive learning rate and momentum fac-
tor (BPALM)[21], is used as the multi-step predictive
model in NNPC. The Tent-map is studied in the
mathematics of dynamical systems because it has sev-
eral interesting properties such as chaotic orbits, simple

Received 2006-09-04, accepted 2007-03-27.

* Supported by the National Natural Science Foundation of China (No.60374037, No.60574036), the Program for New Century
Excellent Talents in University of China (NCET), the Specialized Research Fund for the Doctoral Program of Higher Education
of China (No.20050055013), and the Opening Project Foundation of National Lab of Industrial Control Technology (No.0708008).

** To whom correspondence should be addressed. E-mail: chenzq@nankai.edu.cn

Chin. J. Ch. E. (Vol. 15, No.4)

August, 2007

540

shape, and so on. Most importantly, the Tent-map
shows the outstanding advantages and has higher
iterative speed than the Logistic map, because the
probability density function of the chaotic sequence
for the Tent-map is a uniform function whereas the
probability density function of chaotic sequence for
the Logistic map is a Chebyshev-type function[22].
The TCOA is applied to perform the nonlinear opti-
mization to enhance the convergence and accuracy.
The simulation on a laboratory-scale liquid-level sys-
tem shows that the method is effective.

2 NEURAL NETWORK PREDICTIVE CONT-
ROL (NNPC)

In contrast to the neural network direct control,
the NNPC is more practical. Here, the neural network
will be used as the prediction model of the nonlinear
plant.

Assume that the unknown nonlinear system is
expressed as the input-output form by:

() ()
() ()

a

b

() , , ,1

, ,

y t f y y t nt

u u t d nt d

⎡= ⋅ ⋅ ⋅ −−⎣
⎤ ⋅ ⋅ ⋅ − −− ⎦ (1)

where, y(t) and u(t) are the output and input of the
system, respectively; f(·) is the unknown nonlinear
function to be estimated by a neural network; na and
nb are the orders of the system; d is the time delay,
which is assumed to be at least one.

Since the input to the neural network is:
() ()

() ()
a

T
b

() , , ,1

, ,

t y y t nt

u u t d nt d

⎡= ⋅ ⋅ ⋅ −−⎣

⎤ ⋅ ⋅ ⋅ − −− ⎦

X

 (2)

the neural model for the unknown nonlinear system (1)
can be expressed as:

ˆˆ() [()]y t f t= X (3)
where, ˆ()y t is the output of the neural network and

f̂ is the estimation of f.
The purpose of the NNPC algorithm is to select

the control signal u(t) such that the output of the system
y(t) is made as close as possible to the set-point r(t). A
schematic illustration of the NNPC is given in Fig.1.

Figure 1 NNPC scheme

The process control input is calculated to mini-
mize a criterion J at each sampling instant t,

() () ()
a2 2

r
1 1

1
NN

j j
J y y ut j t j t jλ

= =

= − + Δ⎡ ⎤ ⎡ ⎤+ + + −⎣ ⎦ ⎣ ⎦∑ ∑

(4)

where, N is the prediction horizon and Nu is the con-
trol horizon, and generally Nu≤N; λ is the control
weighting factor; u(t) is the control signal; Δ is the
difference operator, () () (1)u t u t u tΔ = − − ; ˆ()y t j+
is the j-step-ahead predicted output by the network
prediction model; r ()y t j+ is the j-step-ahead future
reference output, which is obtained as follows:

r

r r

() ()
() (1) (1) ()

y t y t
y t j y t j r tα α

=⎧
⎨ + = + − + −⎩

 (5)

where, α is a soft factor, 0≤α＜1, and r(t) represents
the real set-points. The purpose of the weighting fac-
tor λ is to penalize large change in the process input
and reduce actuator wear. It is usual to set λ as a posi-
tive constant.

Rewrite the criterion (4) in vector notation as
follows:

T T

T T

ˆ ˆ () ()() () () ()

() () () ()

J t tt t t t

t t t t

λ

λ

⎡ ⎤ ⎡ ⎤= + Δ Δ− −⎣ ⎦ ⎣ ⎦

 = + Δ Δ

r r U UY Y Y Y

E E U U (6)
where,

[]T
r r r() (1), (2), , ()t y t y t y t N= + + ⋅ ⋅ ⋅ +rY

[]Tˆ ˆ ˆ ˆ() (1), (2), , ()t y t y t y t N= + + ⋅ ⋅ ⋅ +Y

[]T() (1), (2), , ()t e t e t e t N= + + ⋅ ⋅ ⋅ +E

[]T
u() (), (1), , (1)t u t u t u t NΔ = Δ Δ + ⋅ ⋅ ⋅ Δ + −U

[]T
u() (), (1), , (1)t u t u t u t N= + ⋅ ⋅ ⋅ + −U (7)

and

r ˆ() () () for 1, ,e t i y t i y t i i N+ = + − + = ⋅ ⋅ ⋅ (8)
Using the gradient decent rule, it can be obtained

that

c(1) ()
()
Jt t

t
η ∂

+ = −
∂

U U
U

 (9)

where, ηc is a learning rate,
T Tˆ () ()2 () 2 ()

() () ()
J t tt t

t t t
λ∂ ∂ ∂Δ

= − + Δ
∂ ∂ ∂

Y UE U
U U U

 (10)

Since () () (1)u t u t u tΔ = − − , there is

T

1 0 0 0
1 1 0 0

() 0 1 1 0
()

0 0 1 1

t
t

⎡ ⎤
⎢ ⎥−⎢ ⎥∂Δ ⎢ ⎥= −

∂ ⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

U
U

 (11)

uT

u

ˆ ˆ(1) (1)
() (1)ˆ ()

()
ˆ ˆ() ()

() (1)

y t y t
u t u t N

t
t

y t N y t N
u t u t N

∂ + ∂ +⎡ ⎤
⎢ ⎥∂ ∂ + −⎢ ⎥∂
⎢ ⎥=

∂ ⎢ ⎥∂ + ∂ +⎢ ⎥
⎢ ⎥∂ ∂ + −⎣ ⎦

Y
U

 (12)

It can be seen that each element in the above matrix

Neural Network Nonlinear Predictive Control Based on Tent-map Chaos Optimization

Chin. J. Ch. E. 15(4) 539 (2007)

541

can be found by differentiating Eq.(3) with respect to
each element in Eq.(7). As a result, the following can
be obtained:

1

ˆˆ() ()
(1) (1)

ˆ ˆ()()
(1)ˆ()

n

i m

y t n f
u t m u t m

y t if
u t my t i

−

=

∂ + ∂
= +

∂ + − ∂ + −

∂ +∂ ⎡ ⎤ ⎢ ⎥∂ + −∂ + ⎣ ⎦
∑

X

X
 (13)

for 1,2, ,n N= ⋅ ⋅ ⋅ ; u1,2, ,m N= ⋅ ⋅ ⋅
Equation (12) is the well-known Jacobian matrix,

which must be calculated using Eq.(13), and every
time a new control signal has to be determined. This
can result in a large computational load for a big N
and Nu. To simplify the computation, Noriega and
Wang[17] presented a recursive algorithm for calcu-
lating the Jacobian matrix. More details of the calcula-
tion procedure can be referred to Refs.[11—17].

Most of the previous works are, however, based
on the nonlinear programming method, which pro-
vides local optimum values only and in addition, these
values depend on the selection of the starting point.
Moreover, these gradient-based methods require vast
cost in the complex calculation of the Jacobian or
Hessian of the criterion. To simplify and reduce the
computation load of NNPC, the intelligent optimiza-
tion (gradient-free) methods are more appropriate and
flexible.

3 TENT-MAP CHAOS OPTIMIZATION
Chaos, an apparently disordered behavior that is

nonetheless deterministic, is a universal phenomenon
that occurs in several nonlinear systems. It is featured
by highly unstable motion of deterministic systems in
a bounded region of the phase space. High instability
indicates that the distance of two nearby orbits in-
creases exponentially with time, which is a result of
the extreme sensitivity of chaotic systems to the initial
conditions. The Lyapunov exponents quantify this
property. The magnitude of the Lyapunov exponent
represents the principal rate of the orbits’ divergence
in the phase space. For a one-dimensional dynamical
system, xi+1＝f (xi), and the Lyapunov exponent (LE)
is defined as the long-time average of the exponent
with respect to an orbit:

1

0

1LE lim ln ()
N

iN i
f ' x

N

−

→∞ =

= ∑ (14)

Chaos is then characterized by the boundedness
of the system trajectories with a positive Lyapunov
exponent, which implies that the average gradient of
the map is greater than unity, and accordingly, two
nearby orbits in phase space diverge at an exponential
rate.

It was emphasized that the sensitivity to the ini-
tial value suggests the irregularity of the series {xi}
generated by chaos. Consider the ith number xi of the
series. It may be possible that xj with j＞i is quite
close to xi. Unless xi＝xj exactly, however, the part xi,
xi+1, xi+2, ··· is very different from the part xj, xj+1,

xj+2, ··· owing to the sensitivity to the initial difference.
Although the long-term behavior of a chaotic

system shows typical stochastic properties, chaos is
not equivalent to a random process. A chaotic motion
can traverse every state in a certain region (called the
chaos space) by its own regularity, and every state is
visited only once, and therefore, there is no precise
periodicity. The unique ergodicity and the irregularity
of the series generated by chaos make chaotic dynam-
ics a potential candidate in the field of global optimi-
zation, namely, the chaos optimization algorithm
(COA)[20]. In fact, it has been successfully applied in
improving the performance of the genetic algorithm
(GA)[23] and particle swarm optimization (PSO)[24],
in solving nonlinear optimization problems for the
sliding mode control (SMC)[25], and so on.

Chaos variables are almost generated by the Lo-
gistic map in the literatures. However, the invariant
density (also called the probability density) of the it-
erates for the Logistic map is:

1()
2 (1)

x
x x

ρ =
π −

 (15)

The Chebyshev-type distribution function in the
interval [0, 1] is shown in Fig.2. As seen in Fig.2, the
invariant density of the iterates in the small interval
[0, 0.05] and [0.95, 1] is considerably higher than in
the other interval [0.05, 0.95]. If the global optimum is
not in the interval [0, 0.05] and [0.95, 1] but in
[0.05, 0.95], the Logistic-map-based COA (LCOA)
may require a large number of iterations. Thus, it af-
fects the global search capacity and computational
efficiency.

Figure 2 Probability density for the Logistic map

The invariant density of the iterates for Tent-map
is:

() 1xρ = (16)
Since the invariant density of the iterates is the

uniform distribution function in the interval [0,1], the
Tent-map shows outstanding advantages and higher
iterative speed than the Logistic map. In this study, the
Tent-map is used in chaos optimization to generate the
chaotic time series. Consider the equation of Tent-map:

1
2 , [0,0.5)

2(1), [0.5,1]
i i

i
i i

x x
x

x x+
∈⎧

= ⎨ − ∈⎩
 (17)

where, xi is the chaotic variable. Its Lyapunov expo-
nent is:

LE ln 2 0= > (18)

Chin. J. Ch. E. (Vol. 15, No.4)

August, 2007

542

The chaotic evolutions can be generated by
Eq.(17), and the ergodic area (i.e., chaos space) is the
interval (0, 1). A general procedure of chaos optimiza-
tion can be found in Ref.[20].

4 NNPC BASED ON TENT-MAP CHAOS OPT-
IMIZATION

The core problem in NNPC is the online optimi-
zation of the criterion Eq.(4). In this study, the control
actions T

u() [(), (1), , (1)]t u t u t u t N= + ⋅ ⋅ ⋅ + −U are
sought via Tent-map chaos optimization.

Since Nu components are involved in the control
actions U(t), Nu initial chaotic variables, 1,0x ,

u2,0 ,0, , Nx x⋅ ⋅ ⋅ , ,00 1jx≤ ≤ , u1,2, ,j N= ⋅ ⋅ ⋅ , are se-
lected randomly, and the fixed points of the Tent-map,
such as 0 and 2/3, cannot be used as initial variables.
The lower bounds and upper bounds of the searched
variables are denoted as bd j

l and bd j
u , u1,2, ,j N= ⋅ ⋅ ⋅ .

J* and U* are assumed to be the optimal cost index
and the optimizers, respectively. Jk+1 and Uk+1 respec-
tively denote the cost index and the NNPC control
actions in the (k+1) th iteration.

The major steps of the NNPC based on the
Tent-map chaos optimization can be described as fol-
lows:

Step 1. At time step t, simultaneously sample in-
puts and outputs of the process [including y(t)].

Step 2. Start with the previously calculated con-
trol input vector, and compute the predictive output
values using the neural network model, and thus, de-
termine the cost function J[U(t)].

Step 3. Apply the Tent-map-based chaos optimi-
zation to calculate a new control input that minimizes
criterion (4).

① Chaotify the variables. Substitute 1, 2,, , ,k kx x ⋅ ⋅ ⋅

u ,N kx in the Eq.(17) to generate Nu chaotic variables

u1, 1 2, 1 , 1, , ,k k N kx x x+ + +⋅ ⋅ ⋅ via the Tent-map.
② Perform the transformation from the chaotic

space to the solution space using the following for-
mula, namely, the first carrier wave.

()bd bd, 1 bd , 1j jjj k j ku ll x+ +−= + ⋅U

u1, 2, , j N= ⋅ ⋅⋅ (19)
③ Compute the performance index Jk+1 in Eq.(4),

and assign the optima as follows: If k＝0 or Jk+1≤J*;
then, J*＝Jk+1, U*＝Uk+1; otherwise, do nothing.

Repeat the above ①, ②, and ③ until J* and U*
do not improve within certain steps, and turn to the
next ④.

④ Utilize the Tent-map Eq.(17) again to generate
Nu chaotic variables x1,k+1, x2,k+1,···, x1,k+1 and perform
chaos search using second carrier wave.

*
1 , 1k j kxβ+ += +U U (20)

where, βxj,k+1 is a chaos variable with small ergodic
interval; β is an adjusting coefficient, normally chosen

as a small positive constant, here, β＝0.01.
⑤ Compute the performance index Jk+1 in Eq.(4),

and assign the new optima; do the same as ③.
Repeat the above ④ and ⑤ until J* and U* do

not improve within certain steps, and turn to Step ④.
Step 4. Send the first control input u(t) to the process.
Step 5. t:＝t+1, turn to Step 1.

5 SIMULATION STUDY
To validate the theoretical developments, the fol-

lowing simulation study is presented.
Example: Control of a laboratory-scale liquid-level

system.
This example was taken from Ref.[13, 14]. The

model is identified from a laboratory-scale liquid level
system. The system consists of a D.C. water pump
feeding a conical flask, which in turn feeds a square
tank, giving the system second-order dynamics. The
controllable input is the voltage to the pump motor,
and the plant output is the height of the water in the
conical flask. The aim is that the water height must
follow some demand signals, and the identified model
is given as:

2

2

2

() 0.9722 (1) 0.3578 (1)
0.1295 (2) 0.3103 (1) (1)

0.04228 (2) 0.1663 (2) (2)

0.03259 (1) (2)

0.3513 (1) (2)
0.3084 (1) (2) (2)
0.1087 (2) (1) (2)

y t y t u t
u t y t u t

y t y t u t

y t y t

y t u t
y t y t u t
y t u t u t

= − + − −
 − − − − −

 − + − − −

 − − −

 − − +
 − − − +
 − − − +

2

0.2573 (2) (1)

0.2939 (2) (1)
0.4770 (2) (1) (1)

y t e t

y t e t
y t u t e t

 − − +

 − − +
 − − −

(21)

The desired set-points r(t) are switched between
2 and －2 every 100 iterations, and e(t) is a zero
mean white noise sequence with variance 0.1. The
initial conditions are set as y(－1)＝0, y(－2)＝0.

A feedforward neural network with 4 input neu-
rons, 7 hidden neurons, and 1 output neuron is used,
namely 4-7-1 structure. The input signal applied to
plant (21) is a finite sequence of uniformly distributed
random variables with range [－2, 2]. Thus, it gener-
ates input/output samples (patterns), which will be
used to train the NN. Among the samples, 100 sam-
ples are used as training NN data, while the remaining
100 samples are used as testing NN data. In conven-
tional BP algorithm[26], the input signal is often used
to choose a proper learning rate that stays fixed during
the whole process of training. Therefore, its conver-
gence tends to be very slow, and it often produces
suboptimal solutions. To improve the performance of
the BP algorithm, the BP algorithm with adaptive
learning rate and momentum factor (BPALM)[21] is
employed to train the weights and biases. During the
training, the weights and biases of the NN are opti-
mized by the BPALM, which minimize the mean

Neural Network Nonlinear Predictive Control Based on Tent-map Chaos Optimization

Chin. J. Ch. E. 15(4) 539 (2007)

543

square error criterion:

[]2
nn

1

1 ˆ() (|)
2

p

t
E y t y t

p =

= −∑ W (22)

where, p represents the training samples, and W
represents the optimized neural weights vector. The
weights are therefore updated as follows[21]:

[]nn(1) () () () () (1)
()

Et t t t t t
t

η μ
∂

+ = + + − −
∂

W W W W
W

(23)
where, η and μ are the learning rate and the momen-
tum factor, respectively. η and μ are adaptively ad-
justed at each iteration given by:

()

()

nn nn1

nn nn

nn nn1

(), () (1)1
(1) () () (1)

(), () (1)1

t E t E t
t t E t E t

t E t E t

ηθ
η η

ηθ

< −+⎧
⎪+ = = −⎨
⎪ > −−⎩

 (24)

()

()

nn nn2

nn nn

nn nn2

(), () (1)1
(1) () () (1)

(), () (1)1

t E t E t
t t E t E t

t E t E t

μθ
μ μ

μθ

< −+⎧
⎪+ = = −⎨
⎪ > −−⎩

 (25)

where, 0＜θ1, θ2＜1. In this article, θ1 and θ2 are set to
be 0.05, and the initial learning rate and the momen-
tum factor are set as η(0)＝0.01, μ(0)＝0.8.

The parameters of the NNPC are set as N＝7,
Nu＝4, λ＝0.05, and α＝0.2. Figs.3(a), (b), and (c)
show the control of the liquid level system by
quasi-Netwon, LCOA, and TCOA, respectively. As
seen in Fig.3, the proposed controller has a good
tracking capability. In addition, the Tent-map chaos
optimization (TCOA) method is compared with the
quasi-Newton, Logistic-map chaos optimization

(LCOA) methods in terms of the mean square tracking
error (MSE) as shown in Table 1. It is seen that the
TCOA method has smaller mean square tracking error
than the quasi-Newton and LCOA methods.

Table 1 Comparison of the mean square tracking error

MSE of quasi-Newton MSE of LCOA MSE of TCOA
0.0632 0.0359 0.0181

6 CONCLUSIONS
In this article, a novel nonlinear neural network

predictive control (NNPC) strategy based on the new
Tent-map chaos optimization algorithm (TCOA) is
presented. The neural network is used as the
multi-step predictive model and the TCOA is applied
to perform the nonlinear rolling optimization to en-
hance the convergence and accuracy in the NNPC.

The disadvantages of the gradient-based tech-
niques such as slow convergence and dependence on
initial values can be addressed by the chaos optimiza-
tion algorithm. The integration of TCOA with neural
network not only avoids the risk of trapping in the
local optimum point but also allows neglecting the
error gradient information Furthermore, the TCOA
can avoid calculating the complex Jacobian or Hessian
matrices required in gradient-based methods and re-
duce the computation loads of the NNPC. The simula-
tion results show that the method is effective.

NOMENCLATURE
d time delay of system
E(t) output vector of system
Enn mean square error criterion of NN
e(t) output error of system
f̂ estimate of unknown function f
J cost function of NNPC
J* optimal cost index
LE Lyapunov exponent
bd j

l j-low- bound of solution space
N prediction horizon
Nu control horizon
na degree of system output
nb degree of system input
r(t) set-point
U* optimal input vector of system
U(t) input vector of system
u(t) input of system

bd j
u j-upper-bound of solution space
W weights vector of neural network
X(t) input vector to the neural network
{xi} series of chaos
Y(t) output vector of system
ˆ ()tY output vector of neural network
Yr(t) reference output vector of system
y(t) output of system
ˆ()y t output of the neural network
yr(t) reference output of system
yr(t+j) j-step-ahead future reference output
α soft factor of the reference output
β adjusting coefficient of chaos optimization
Δ symbol of backward difference
η learning rate of neural weights

(a) quasi-Newton

(b) LCOA

(c) TCOA

Figure 3 Control of the liquid level system
- - - - r(t); —— y(t)

Chin. J. Ch. E. (Vol. 15, No.4)

August, 2007

544

ηc learning rate of NNPC
θ1 adjusting coefficient of NN learning rate
θ2 adjusting coefficient of NN momentum factor
λ control weight factor
μ momentum factor of neural weights
ρ(x) probability density of chaotic map

REFERENCES
1 Henson, M.A., “Nonlinear model predictive control:

Current status and future directions”, Computers and
Chemical Engineering, 23(2), 187—202(1998).

2 Cutler, C.R., Ramaker B.L., “Dynamic matrix control - A
computer control algorithm”, In: Proc. of the American
Control Conf., IEEE Press, Piscataway, NJ (1980).

3 Clarke, D.W., Mohtadi, C., Tuffs, P.S., “Generalized pre-
dictive control (Ⅰ) & (Ⅱ)”, Automatica, 23(2), 137—
160(1987).

4 Chen, Z.Q., Mao, Z.X., Du, S.Z., Sun, Q.L., Yuan, Z.Z.,
“Analysis of robustness of PID-GPC based on IMC
structure”, Chin. J. Chem. Eng., 11(1), 55—61(2003).

5 Su, B.L, Chen, Z.Q., Yuan, Z.Z., “Multivariable decoup-
ling predictive control with input constraints and its ap-
plication on chemical process”, Chin. J. Chem. Eng.,
14(2), 216—222(2006).

6 Zhong, W.M., He, G.L., Pi, D.Y., Sun, Y.X., “SVM with
quadratic polynomial kernel function based nonlinear
model one-step-ahead predictive control,” Chin. J. Chem.
Eng., 13(3), 373—379(2005).

7 Wang, Y.H., Huang, D.X., Jin, Y.H., “A hybrid model
predictive control for handling infeasibility and con-
straint prioritization”, Chin. J. Chem. Eng., 13(2), 211—
217(2005).

8 Hornik, K., Stinchcombe, M., White, H., “Multilayer
feedforward network are universal approximators”,
Neural Networks, 2(5), 359—366(1989).

9 Chen, T.P., Chen, H., “Approximations of continuous
functionals by neural network with application to dy-
namics systems”, IEEE Trans. Neural Networks, 4(6),
910—918(1993).

10 Hussian, M.A., “Review of the applications of neural
networks in chemical process control — Simulation and
online implementation”, Artificial Intelligence in Engi-
neering, 13(1), 55—68(1999).

11 Saint, D.J., Bhat, N., McAvoy, T.J., “Neural net based
model predictive control”, Int. J. Control, 54(6), 1453—
1468(1991).

12 Tan, Y., Cauwenberghe, A., “Nonlinear one-step- ahead
control using neural networks: Control strategy and sta-
bility design”, Automatica, 32(12), 1701—1706(1996).

13 Ahmed, M.S., Anjum, M.F., “Neural-net-based direct

self-turning control of nonlinear plants”, Int. J. Control,
66(1), 85—104(1997).

14 Li, X., Chen, Z.Q., Yuan, Z.Z., “Simple recurrent neural
network-based adaptive predictive control for nonlinear
systems”, Asian J. Control, 4(2), 231—239(2002).

15 Zhang, Y., Chen, Z.Q, Yang, P., Yuan, Z.Z., “Multi- vari-
able nonlinear proportional- integral-derivative decoup-
ling control based on recurrent neural net-works”, Chin.
J. Chem. Eng., 12(5), 677—681(2004).

16 Soloway, D., Haley, P.J., “Neural generalized predictive
control: A Newton-Raphson implementation”, In: Proc.
IEEE Int. Symposium on Intelligent Control, IEEE Press,
Piscataway, NJ, 277—282(1996).

17 Noriega, J.R., Wang, H., “A direct adaptive neural net-
work control for unknown nonlinear systems and its ap-
plication”, IEEE Trans. Neural Networks, 9(1),
27-34(1998).

18 Shin, S.C., Park, S.B., “GA-based predictive control for
nonlinear processes”, Electronics Letters, 34(20), 1980—
1981(1998).

19 Wang, X., Xiao, J., “PSO-based model predictive control
for nonlinear processes”, In: Lecture Notes in Computer
Science 3611, Springer-Verlag, Berlin, Germany, 196—
203(2005).

20 Li, B., Jiang, W.S., “Optimizing complex functions by
chaos search”, Cybernetics and Systems, 29(4), 409—
419(1998).

21 Yu, C.C., Liu, B.D., “A backpropagation algorithm with
adaptive learning rate and momentum coefficient”, In:
Proc. 2002 Int. Joint Conf. Neural Networks, IEEE Press,
Piscataway, NJ, 1218—1223(2002).

22 Steeb, W.H., The Nonlinear Workbook: Chaos, Fractals,
Cellular Automata, Neural Networks, Genetic Algo-
rithms, Gene Expression Programming, Support Vector
Machine, Wavelets, Hidden Markov Models, Fuzzy
Logic with C++, Java and SymbolicC++ Programs, 3rd
Ed. World Science Publisher, Kackensack, NJ (2005).

23 Yan, X.F., Chen, D.Z., Hu, S.X., “Chaos-genetic algo-
rithms for optimizing the operating conditions based
RBF-PLS model”, Computers and Chemical Engineering,
27(10), 1393—1404(2003).

24 Liu, B., Wang, L., Jin, Y.H., “Improved particle swarm
optimization combined with chaos”, Chaos, Solitons and
Fractals, 25(5), 1261—1271(2005).

25 Lu, Z., Shieh, L.S, Chen, G.R., Coleman, N.P., “Simplex
sliding mode control for nonlinear uncertain systems via
chaos optimization”, Chaos, Solitons and Fractals, 23(3),
747—755(2005).

26 Rumelhart, D.E., Hinton, G.E., Williams R.J., “Learning
representations by back-propagating errors”, Nature, 323,
533—536(1986).

