Chin.J.Chem.Eng. ›› 2019, Vol. 27 ›› Issue (2): 286-292.DOI: 10.1016/j.cjche.2018.02.028
• Fluid Dynamics and Transport Phenomena • Previous Articles Next Articles
Wei Zhang, Zhijun Xu, Xiaoning Yang
Received:
2017-11-21
Revised:
2018-01-29
Online:
2019-03-18
Published:
2019-02-28
Contact:
Xiaoning Yang
Supported by:
Supported by the National Natural Science Foundation of China (21676136 and 21376116) and A PAPD Project of Jiangsu Higher Education Institution
Wei Zhang, Zhijun Xu, Xiaoning Yang
通讯作者:
Xiaoning Yang
基金资助:
Supported by the National Natural Science Foundation of China (21676136 and 21376116) and A PAPD Project of Jiangsu Higher Education Institution
Wei Zhang, Zhijun Xu, Xiaoning Yang. Molecular simulation of penetration separation for ethanol/water mixtures using two-dimensional nanoweb graphynes[J]. Chin.J.Chem.Eng., 2019, 27(2): 286-292.
Wei Zhang, Zhijun Xu, Xiaoning Yang. Molecular simulation of penetration separation for ethanol/water mixtures using two-dimensional nanoweb graphynes[J]. Chinese Journal of Chemical Engineering, 2019, 27(2): 286-292.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2018.02.028
[1] U.H.F. Bunz, Y. Rubin, Y. Tobe, Polyethynylated cyclic pi-systems:scaffoldings for novel two and three-dimensional carbon networks, Chem. Soc. Rev. 28(1999) 107-119.[2] F. Diederich, Carbon scaffolding-building acetylenic all-carbon and carbon-rich compounds, Nature 369(1994) 199-207.[3] H.H. Wu, Q.H. Gong, D.H. Olson, J. Li, Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks, Chem. Rev. 112(2012) 836-868.[4] Y.J. Li, L. Xu, H.B. Liu, Y.L. Li, Graphdiyne and graphyne:from theoretical predictions to practical construction, Chem. Soc. Rev. 43(2014) 2572-2586.[5] A.L. Ivanovskii, Graphynes and graphdyines, Prog. Solid State Chem. 41(2013) 1-19.[6] E.L. Spitler, C.A. Johnson, M.M. Haley, Renaissance of annulene chemistry, Chem. Rev. 106(2016) 5344-5386.[7] M.M. Haley, S.C. Brand, J.J. Pak, Carbon networks based on dehydrobenzoannulenes:synthesis of graphdiyne substructures, Angew. Chem. Int. Ed. Engl. 36(1997) 836-838.[8] B. Cirera, Y.Q. Zhang, J. Bjork, S. Klyatskaya, Z. Chen, M. Ruben, J.V. Barth, F. Klappenberger, Synthesis of extended graphdiyne wires by vicinal surface templating, Nano Lett. 14(2014) 1891-1897.[9] M. Gholami, F. Melin, R. McDonald, M.J. Ferguson, L. Echegoyen, R.R. Tykwinski, Synthesis and characterization of expanded radialenes, bisradialenes, and radiaannulenes, Angew. Chem. Int. Ed. Engl. 46(2007) 9081-9085.[10] Q.H. Yuan, F. Ding, Formation of carbyne and graphyne on transition metal surfaces, Nanoscale 6(2014) 12727-12731.[11] G.X. Li, Y.L. Li, H.B. Liu, Y.B. Guo, Y. Li, D. Zhu, Architecture of graphdiyne nanoscale films, Chem. Commun. 46(2010) 3256-3258.[12] C.Y. Kuang, G. Tang, T.G. Jiu, H. Yang, H.B. Liu, B.R. Li, W.N. Luo, X.D. Li, W.J. Zhang, F.S. Lu, J.F. Fang, Y.L. Li, Highly efficient electron transport obtained by doping PCBM with graphdiyne in planar-heterojunction perovskite solar cells, Nano Lett. 15(2015) 2756-2762.[13] N.L. Yang, Y.Y. Liu, H. Wen, Z.Y. Tang, H.J. Zhao, Y.L. Li, D. Wang, Photocatalytic properties of graphdiyne and graphene modified TiO2:from theory to experiment, ACS Nano 7(2013) 1504-1512.[14] H.J. Tang, C.M. Hessel, J.Y. Wang, N.L. Yang, R.Y. Yu, H.J. Zhao, D. Wang, Twodimensional carbon leading to new photoconversion processes, Chem. Soc. Rev. 43(2014) 4281-4299.[15] Y.H. Guo, K. Jiang, B. Xu, Y.D. Xia, J. Yin, Z.G. Liu, Remarkable hydrogen storage capacity in Li-decorated graphyne:theoretical predication, J. Phys. Chem. C 116(2012) 13837-13841.[16] H.J. Hwang, Y. Kwon, H. Lee, Thermodynamically stable calcium-decorated graphyne as a hydrogen storage medium, J. Phys. Chem. C 116(2012) 20220-20224.[17] C.S. Huang, S.L. Zhang, H.B. Liu, Y.J. Li, G.T. Cui, Y.L. Li, Graphdiyne for high capacity and long-life lithium storage, Nano Energy 11(2015) 481-489.[18] S.L. Zhang, H.B. Liu, C.S. Huang, G. Cui, Y.L. Li, Bulk graphdiyne powder applied for highly efficient lithium storage, Chem. Commun. 51(2015) 1834-1837.[19] Y. Jiao, A.J. Du, S.C. Smith, Z.H. Zhu, S.Z. Qiao, H-2 purification by functionalized graphdiyne-role of nitrogen doping, J. Mater. Chem. A 3(2015) 6767-6771.[20] Y. Jiao, A.J. Du, M. Hankel, Z.H. Zhu, V. Rudolph, S.C. Smith, Graphdiyne:a versatile nanomaterial for electronics and hydrogen purification, Chem. Commun. 47(2011) 11843-11845.[21] S.W. Cranford, M.J. Buehler, Selective hydrogen purification through graphdiyne under ambient temperature and pressure, Nanoscale 4(2012) 4587-4593.[22] H.Y. Zhang, X.J. He, M.Z. Zhao, M. Zhang, L.X. Zhao, X.J. Feng, Y.H. Luo, Tunable hydrogen separation in sp-sp2 hybridized carbon membranes:a first-principles prediction, J. Phys. Chem. C 116(2012) 16634-16638.[23] S.C. Lin, M.J. Buehler, Mechanics and molecular filtration performance of graphyne nanoweb membranes for selective water purification, Nanoscale 5(2013) 11801-11807.[24] M.M. Xue, H. Qiu, W.L. Guo, Exceptionally fast water desalination at complete salt rejection by pristine graphyne monolayers, Nanotechnology 24(2013), 505720.[25] C.Q. Zhu, H. Li, X.C. Zeng, E.G. Wang, S. Meng, Quantized water transport:ideal desalination through graphyne-4 membrane, Sci. Rep. 3(2013) 3163.[26] J.L. Kou, X.Y. Zhou, H.J. Lu, F.M. Wu, J.T. Fan, Graphyne as the membrane for water desalination, Nanoscale 6(2014) 1865-1870.[27] F. Liu, J. Yang, Z.J. Xu, X.N. Yang, Selective surface adsorption and pore trapping for ethanol-water mixtures near single-layer polyporous graphynes, Appl. Surf. Sci. 387(2016) 1080-1087.[28] A. Nalaparaju, X.S. Zhao, J.W. Jiang, Biofuel purification by pervaporation and vapor permeation in metal-organic frameworks:a computational study, Energy Environ. Sci. 4(2011) 2107-2116.[29] H.J. Huang, S. Ramaswamy, U.W. Tschirner, B.V. Ramarao, A review of separation technologies in current and future biorefineries, Sep. Purif. Technol. 62(2008) 1-21.[30] G.P. Liu, W. Wei, W.Q. Jin, N.P. Xu, Polymer/ceramic composite membranes and their application in pervaporation process, Chin. J. Chem. Eng. 20(2012) 62-70.[31] Y. Jiao, A.J. Du, M. Hankel, S.C. Smith, Modelling carbon membranes for gas and isotope separation, Phys. Chem. Chem. Phys. 15(2013) 4832-4843.[32] M. Thomas, B. Corry, T.A. Hilder, What have we learnt about the mechanisms of rapid water transport, ion rejection and selectivity in nanopores from molecular simulation? Small 10(2014) 1453-1465.[33] S. Plimpton, Fast parallel algorithms for short-range molecular-dynamics, J. Comput. Phys. 117(1995) 1-19.[34] H.J.C. Berendsen, J.R. Grigera, T.P. Straatsma, The missing term in effective pair potentials, J. Phys. Chem. 91(1987) 6269-6271.[35] M. Lundgren, N.L. Allan, T. Cosgrove, Wetting of water and water/ethanol droplets on a non-polar surface:a molecular dynamics study, Langmuir 18(2002) 10462-10466.[36] J.T. Fern, D.J. Keffer, W.V. Steele, Vapor-liquid equilibrium of ethanol by molecular dynamics simulation and Voronoi tessellation, J. Phys. Chem. B 111(2007) 13278-13286.[37] A.K. Metya, S. Khan, J.K. Singh, Wetting transition of the ethanol-water droplet on smooth and textured surfaces, J. Phys. Chem. C 118(2014) 4113-4121.[38] N. Wei, X.S. Peng, Z.Q. Xu, Understanding water permeation in graphene oxide membranes, ACS Appl. Mater. Interfaces 6(2014) 5877-5883.[39] M.D. Ma, L.M. Shen, J. Sheridan, J.Z. Liu, C. Chen, Q.S. Zheng, Friction of water slipping in carbon nanotubes, Phys. Rev. E 83(2011), 036316.[40] M.E. Suk, N.R. Aluru, Molecular and continuum hydrodynamics in graphene nanopores, RSC Adv. 3(2013) 9365-9372.[41] M.E. Suk, N.R. Aluru, Ion transport in sub-5-nm graphene nanopores, J. Chem. Phys. 140(2014), 084707.[42] M. Mijakovic, K.D. Polok, B. Kezic, F. Sokolic, A. Perera, L. Zoranic, A comparison of force fields for ethanol-water mixtures, Mol. Simul. 41(2015) 699-712.[43] M. Mijakovic, B. Kezic, L. Zoranic, F. Sokolic, A. Asenbaum, C. Pruner, E. Wilhelm, Ethanol-water mixtures:ultrasonics, Brillouin scattering and molecular dynamics, J. Mol. Liq. 164(2011) 66-73.[44] Z.Q. Hu, Y.F. Chen, J.W. Jiang, Zeolitic imidazolate framework-8 as a reverse osmosis membrane for water desalination:insight from molecular simulation, J. Chem. Phys. 134(2011), 134705.[45] N. Narita, S. Nagai, S. Suzuki, K. Nakao, Optimized geometries and electronic structures of graphyne and its family, Phys. Rev. B 58(1998) 11009-11014.[46] G. Hummer, J.C. Rasaiah, J.P. Noworyta, Water conduction through the hydrophobic channel of a carbon nanotube, Nature 414(2001) 188-190.[47] J.L. Kou, X.Y. Zhou, Y.Y. Chen, H.J. Lu, F.M. Wu, J.T. Fan, Water permeation through single-layer graphyne membrane, J. Chem. Phys. 139(2013), 064705.[48] X.P. Ren, C.L. Wang, B. Zhou, H.P. Fang, J. Hu, R.H. Zhou, Ethanol promotes dewetting transition at low concentrations, Soft Matter 9(2013) 4655-4660.[49] X.P. Ren, B. Zhou, C. Wang, Water-induced ethanol dewetting transition, J. Chem. Phys. 137(2012), 024703.[50] M. Shahbabaei, D. Kim, Transport of water molecules through noncylindrical pores in multilayer nanoporous graphene, Phys. Chem. Chem. Phys. 19(2017) 20749-20759.[51] D. Cohen-Tanugi, J.C. Grossman, Water desalination across nanoporous graphene, Nano Lett. 12(2012) 3602-3608.[52] C.Q. Zhu, H. Li, S. Meng, Transport behavior of water molecules through twodimensional nanopores, J. Chem. Phys. 141(2014), 18C528.[53] A. Nicolai, B.G. Sumpter, V. Meunier, Tunable water desalination across graphene oxide framework membranes, Phys. Chem. Chem. Phys. 16(2014) 8646-8654.[54] D. Cohen-Tanugi, J.C. Grossman, Water permeability of nanoporous graphene at realistic pressures for reverse osmosis desalination, J. Chem. Phys. 141(2014), 074704.[55] Z.Q. Hu, Y.F. Chen, J.W. Jiang, Zeolitic imidazolate framework-8 as a reverse osmosis membrane for water desalination:insight from molecular simulation, J. Chem. Phys. 134(2011), 134705.[56] X.P. Yang, X.N. Yang, S.Y. Liu, Molecular dynamics simulation of water transport through graphene-based nanopores:flow behavior and structure characteristics, Chin. J. Chem. Eng. 23(2015) 1587-1592.[57] M.E. Suk, N.R. Aluru, Water transport through ultrathin graphene, J. Phys. Chem. Lett. 1(2010) 1590-1594.[58] N. Severin, I.M. Sokolov, J.P. Rabe, Dynamics of ethanol and water mixtures observed in a self-adjusting molecularly thin slit pore, Langmuir 30(2014) 3455-3459.[59] M.Y. Zhao, X.N. Yang, Segregation structures and miscellaneous diffusions for ethanol/water mixtures in graphene-based nanoscale pores, J. Phys. Chem. C 119(2015) 21664-21673.[60] S. Joseph, N.R. Aluru, Why are carbon nanotubes fast transporters of water? Nano Lett. 8(2008) 452-458.[61] H.L. Du, J.Y. Li, J. Zhang, G. Su, X.Y. Li, Y.L. Zhao, Separation of hydrogen and nitrogen gases with porous graphene membrane, J. Phys. Chem. C 115(2011) 23261-23266.[62] Y.D. Zhao, Y.Z. Xie, Z.K. Liu, X.S. Wang, Y. Chai, F. Yan, Two-dimensional material membranes:an emerging platform for controllable mass transport applications, Small 10(2014) 4521-4542.[63] C.Z. Sun, M.S.H. Boutilier, H. Au, P. Poesio, B.F. Bai, R. Karnik, N.G. Hadjiconstantinou, Mechanisms of molecular permeation through nanoporous graphene membranes, Langmuir 30(2014) 675-682.[64] K. Nieszporek, M. Drach, Alkane separation using nanoporous graphene membranes, Phys. Chem. Chem. Phys. 17(2015) 1018-1024.[65] P. Peng, B.L. Shi, Y.Q. Lan, A review of membrane materials for ethanol recovery by pervaporation, Sep. Sci. Technol. 46(2011) 234-246.[66] K.S. Chang, Y.C. Chung, T.H. Yang, S.J. Lue, K.L. Tung, Y.F. Lin, Free volume and alcohol transport properties of PDMS membranes:insights of nano-structure and interfacial affinity from molecular modeling, J. Membr. Sci. 417(2012) 119-130.[67] S. Claes, P. Vandezande, S. Mullens, K. De Sitter, R. Peeters, M.K. Van Bael, Preparation and benchmarking of thin film supported PTMSP-silica pervaporation membranes, J. Membr. Sci. 389(2012) 265-271. |
[1] | Hojatollah Moradi, Hedayat Azizpour, Hossein Bahmanyar, Mohammad Emamian. Molecular dynamic simulation of carbon dioxide, methane, and nitrogen adsorption on Faujasite zeolite [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 70-76. |
[2] | Tongan Yan, Minman Tong, Qingyuan Yang, Dahuan Liu, Yandong Guo, Chongli Zhong. Large-scale simulations of CO2 diffusion in metal-organic frameworks with open Cu sites [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 1-9. |
[3] | Puxu Liu, Yong Wang, Yang Chen, Xiaoqing Wang, Jiangfeng Yang, Libo Li, Jinping Li. Stable titanium metal-organic framework with strong binding affinity for ethane removal [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 35-41. |
[4] | Tongan Yan, Dahuan Liu, Qingyuan Yang, Chongli Zhong. Screening and design of COF-based mixed-matrix membrane for CH4/N2 separation [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 170-177. |
[5] | Yumeng Zhang, Yingying Zhang, Xueling Pan, Yao Qin, Jiawei Deng, Shanshan Wang, Qingwei Gao, Yudan Zhu, Zhuhong Yang, Xiaohua Lu. Molecular insights on Ca2+/Na+ separation via graphene-based nanopores: The role of electrostatic interactions to ionic dehydration [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 220-229. |
[6] | Zilong Liu, Ge Zhao, Xiao Zhang, Lei Gao, Junqing Chen, Weichao Sun, Guanggang Zhou, Guiwu Lu. Superior performance porous carbon nitride nanosheets for helium separation from natural gas: Insights from MD and DFT simulations [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 46-53. |
[7] | Xia Chen, Yan Wang, Lianying Wu, Weitao Zhang, Yangdong Hu. Testing and validation of a self-diffusion coefficient model based on molecular dynamics simulations [J]. Chinese Journal of Chemical Engineering, 2021, 36(8): 138-145. |
[8] | Mingming Zhai, Tomohisa Yoshioka, Jianhua Yang, Jinqu Wang, Dinglin Zhang, Jinming Lu, Yan Zhang. Molecular dynamics simulation of small gas molecule permeation through CAU-1 membrane [J]. Chinese Journal of Chemical Engineering, 2021, 33(5): 104-111. |
[9] | Weichen Zhu, Yuxuan He, Minman Tong, Xiaoyong Lai, Shijia Liang, Xu Wang, Yanjuan Li, Xiao Yan. Exploring the methods on improving CH4 delivery performance to surpass the Advanced Research Project Ageney-Energy target [J]. Chinese Journal of Chemical Engineering, 2021, 33(5): 118-124. |
[10] | Guohui Zhou, Kun Jiang, Zhenlei Wang, Xiaomin Liu. Insight into the behavior at the hygroscopicity and interface of the hydrophobic imidazolium-based ionic liquids [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 42-55. |
[11] | Yinbin Wang, Senjun Yao, Wei Wang, Chenglong Qiu, Jing Zhang, Shengwei Deng, Hong Dong, Chuan Wu, Jianguo Wang. Pyrolysis of vulcanized styrene-butadiene rubber via ReaxFF molecular dynamics simulation [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 94-102. |
[12] | Qingwei Gao, Yumeng Zhang, Aatto Laaksonen, Yudan Zhu, Xiaoyan Ji, Shuangliang Zhao, Yaojia Chen, Xiaohua Lu. Effect of dimethyl carbonate on the behavior of water confined in carbon nanotube [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 177-185. |
[13] | Zhiyong Xu, Zhongjin He, Xuebo Quan, Delin Sun, Zhaohong Miao, Hai Yu, Shengjiang Yang, Zheng Chen, Jinxiang Zeng, Jian Zhou. Molecular simulations of charged complex fluids: A review [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 206-226. |
[14] | Jiaqi Ding, Nan Xu, Manh Tien Nguyen, Qi Qiao, Yao Shi, Yi He, Qing Shao. Machine learning for molecular thermodynamics [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 227-239. |
[15] | Pei Xue, Meng Zheng, Longwei Wang, Liyuan Cao, Liang Zhao, Jinsen Gao, Chunming Xu. Mechanism transformation of cyclohexene-thiophene competitive adsorption in FAU zeolite [J]. Chinese Journal of Chemical Engineering, 2021, 39(11): 68-78. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||