Chin.J.Chem.Eng. ›› 2018, Vol. 26 ›› Issue (9): 1879-1895.DOI: 10.1016/j.cjche.2018.02.036
• Catalysis, Kinetics and Reaction Engineering • Previous Articles Next Articles
Ali Darvishi, Ali Bakhtyari, Mohammad Reza Rahimpour
Received:
2017-08-26
Revised:
2017-12-11
Online:
2018-10-17
Published:
2018-09-28
Contact:
Mohammad Reza Rahimpour,E-mail address:rahimpor@shirazu.ac.ir
Ali Darvishi, Ali Bakhtyari, Mohammad Reza Rahimpour
通讯作者:
Mohammad Reza Rahimpour,E-mail address:rahimpor@shirazu.ac.ir
Ali Darvishi, Ali Bakhtyari, Mohammad Reza Rahimpour. A sensitivity analysis and multi-objective optimization to enhance ethylene production by oxidative dehydrogenation of ethane in a membrane-assisted reactor[J]. Chin.J.Chem.Eng., 2018, 26(9): 1879-1895.
Ali Darvishi, Ali Bakhtyari, Mohammad Reza Rahimpour. A sensitivity analysis and multi-objective optimization to enhance ethylene production by oxidative dehydrogenation of ethane in a membrane-assisted reactor[J]. Chinese Journal of Chemical Engineering, 2018, 26(9): 1879-1895.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2018.02.036
[1] Z.Y. Zakaria, N.A.S. Amin, J. Linnekoski, A perspective on catalytic conversion of glycerol to olefins, Biomass Bioenergy 55(2013) 370-385.[2] F. Cavani, N. Ballarini, A. Cericola, Oxidative dehydrogenation of ethane and propane:How far from commercial implementation? Catal. Today 127(2007) 113-131.[3] H.M. Torres Galvis, K.P. de Jong, Catalysts for production of lower olefins from synthesis gas:A review, ACS Catal. 3(2013)2130-2149.[4] M. Baerns, W. Hinsen, Process for the Production of Ethane and/or Ethylene from Methane, Google Patents, 1986.[5] Q. Smejkal, D. Linke, M. Baerns, Energetic and economic evaluation of the production of acetic acid via ethane oxidation, Chem. Eng. Process. Process Intensif. 44(2005) 421-428.[6] N. Yoneda, S. Kusano, M. Yasui, P. Pujado, S. Wilcher, Recent advances in processes and catalysts for the production of acetic acid, Appl. Catal. A Gen. 221(2001)253-265.[7] M. Soliman, Y. Al-Zeghayer, A.S. Al-Awadi, S. Al-Mayman, Economics of acetic acid production by partial oxidation of ethane, APCBEE Procedia 3(2012)200-208.[8] O.D. Khold, M. Parhoudeh, M.R. Rahimpour, S. Raeissi, A new configuration in the tail-end acetylene hydrogenation reactor to enhance catalyst lifetime and performance, J. Taiwan Inst. Chem. Eng. 65(2016) 8-21.[9] S.S. Haghighi, M. Rahimpour, S. Raeissi, O. Dehghani, Investigation of ethylene production in naphtha thermal cracking plant in presence of steam and carbon dioxide, Chem. Eng. J. 228(2013) 1158-1167.[10] M. Fattahi, F. Khorasheh, S. Sahebdelfar, F.T. Zangeneh, K. Ganji, M. Saeedizad, The effect of oxygenate additives on the performance of Pt-Sn/γ-Al2O3 catalyst in the propane dehydrogenation process, Sci. Iran. 18(2011) 1377-1383.[11] M. Masoumi, M. Shahrokhi, M. Sadrameli, J. Towfighi, Modeling and control of a naphtha thermal cracking pilot plant, Ind. Eng. Chem. Res. 45(2006) 3574-3582.[12] A. Tarafder, B.C. Lee, A.K. Ray, G. Rangaiah, Multiobjective optimization of an industrial ethylene reactor using a nondominated sorting genetic algorithm, Ind. Eng. Chem. Res. 44(2005) 124-141.[13] S. Sadrameli, Thermal/catalytic cracking of hydrocarbons for the production of olefins:A state-of-the-art review I:Thermal cracking review, Fuel 140(2015) 102-115.[14] S. Sadrameli, Thermal/catalytic cracking of liquid hydrocarbons for the production of olefins:A state-of-the-art review Ⅱ:Catalytic cracking review, Fuel 173(2016)285-297.[15] Z. Feli, A. Darvishi, A. Bakhtyari, M.R. Rahimpour, S. Raeissi, Investigation of propane addition to the feed stream of a commercial ethane thermal cracker as supplementary feedstock, J. Taiwan Inst. Chem. Eng. 81(2017) 1-13.[16] B. Barghi, M. Fattahi, F. Khorasheh, Kinetic modeling of propane dehydrogenation over an industrial catalyst in the presence of oxygenated compounds, React. Kinet. Mech. Catal. 107(2012) 141-155.[17] G. Centi, F. Cavani, F. Trifiro, Selective oxidation by heterogeneous catalysis, Springer Science & Business Media, 2012.[18] A. Bakhtyari, M.A. Makarem, M.R. Rahimpour, 4-Light Olefins/Bio-Gasoline Production from Biomass, Bioenergy Systems for the Future, Woodhead Publishing, 201787-148.[19] M.A. Banares, Supported metal oxide and other catalysts for ethane conversion:A review, Catal. Today 51(1999) 319-348.[20] M. Fattahi, M. Kazemeini, F. Khorasheh, A. Darvishi, A.M. Rashidi, Fixed-bed multitubular reactors for oxidative dehydrogenation in ethylene process, Chem. Eng. Technol. 36(2013) 1691-1700.[21] C.A. Gartner, A.C. van Veen, J.A. Lercher, Oxidative dehydrogenation of ethane:Common principles and mechanistic aspects, ChemCatChem 5(2013) 3196-3217.[22] M. Ross, Energy consumption by industry, Annu. Rev. Energy 6(1981) 379-416.[23] M. Ebrahim, Pinch technology:An efficient tool for chemical-plant energy and capital-cost saving, Appl. Energy 65(2000) 45-49.[24] F. Friedler, Process integration, modelling and optimisation for energy saving and pollution reduction, Appl. Therm. Eng. 30(2010)2270-2280.[25] R. Smith, State of the art in process integration, Appl. Therm. Eng. 20(2000) 1337-1345.[26] A. Bakhtyari, R. Haghbakhsh, M.R. Rahimpour, Investigation of thermally double coupled double membrane heat exchanger reactor to produce dimethyl ether and methyl formate, J. Nat. Gas Sci. Eng. 32(2016) 185-197.[27] A. Bakhtyari, M. Mohammadi, M.R. Rahimpour, Simultaneous production of dimethyl ether (DME), methyl formate (MF) and hydrogen from methanol in an integrated thermally coupled membrane reactor, J. Nat. Gas Sci. Eng. 26(2015) 595-607.[28] A. Bakhtyari, M. Parhoudeh, M.R. Rahimpour, Optimal conditions in converting methanol to dimethyl ether, methyl formate, and hydrogen utilizing a double membrane heat exchanger reactor, J. Nat. Gas Sci. Eng. 28(2016) 31-45.[29] A. Bakhtyari, A. Darvishi, M. Rahimpour, A heat exchanger reactor equipped with membranes to produce dimethyl ether from syngas and methyl Formate and hydrogen from methanol, Int. J. 3(2016) 65.[30] M. Khanipour, A. Mirvakili, A. Bakhtyari, M. Farniaei, M.R. Rahimpour, Enhancement of synthesis gas and methanol production by flare gas recovery utilizing a membrane based separation process, Fuel Process. Technol. 166(2017) 186-201.[31] A. Bakhtyari, M.A. Makarem, M.R. Rahimpour, Hydrogen production through pyrolysis, in:R.A. Meyers (Ed.), Encyclopedia of Sustainability Science and Technology, Springer New York, New York, NY 2017, pp. 1-28.[32] M.T. Ravanchi, T. Kaghazchi, A. Kargari, Application of membrane separation processes in petrochemical industry:A review, Desalination 235(2009) 199-244.[33] Z. Kotanjac, Development of packed bed membrane reactor for the oxidative dehydrogenation of propane, University of Twente, 2009.[34] M.L. Rodriguez, D.E. Ardissone, E. Heracleous, A.A. Lemonidou, E. López, M.N. Pedernera, D.O. Borio, Oxidative dehydrogenation of ethane to ethylene in a membrane reactor:A theoretical study, Catal. Today 157(2010) 303-309.[35] M.R. Rahimpour, 10-Membrane Reactors for Biodiesel Production and Processing, Membrane Reactors for Energy Applications and Basic Chemical Production, Woodhead Publishing, 2015289-312.[36] M.R. Rahimpour, 21-Butene Oligomerization, Phenol Synthesis from Benzene, Butane Partial Oxidation, and Other Reactions Carried out in Membrane Reactors, Membrane Reactors for Energy Applications and Basic Chemical Production, Woodhead Publishing, 2015641-660.[37] F. Klose, T. Wolff, S. Thomas, A. Seidel-Morgenstern, Operation modes of packed-bed membrane reactors in the catalytic oxidation of hydrocarbons, Appl. Catal. A Gen. 257(2004) 193-199.[38] J. Le Bars, A. Auroux, M. Forissier, J. Vedrine, Active sites of V2O5/γ-Al2O3 Catalysts in the oxidative dehydrogenation of ethane, J. Catal. 162(1996)250-259.[39] M. Martinez-Huerta, X. Gao, H. Tian, I. Wachs, J. Fierro, M. Banares, Oxidative dehydrogenation of ethane to ethylene over alumina-supported vanadium oxide catalysts:Relationship between molecular structures and chemical reactivity, Catal. Today 118(2006)279-287.[40] K. Chen, S. Xie, A.T. Bell, E. Iglesia, Structure and properties of oxidative dehydrogenation catalysts based on MoO3/Al2O3, J. Catal. 198(2001)232-242.[41] C. Liu, U.S. Ozkan, Spectroscopic and structural characterization of chlorine loading effects on Mo/Si:Ti catalysts in oxidative dehydrogenation of ethane, J. Phys. Chem. A 109(2005) 1260-1268.[42] P. Botella, E. Garcia-González, A. Dejoz, J.L. Nieto, M. Vázquez, J. González-Calbet, Selective oxidative dehydrogenation of ethane on MoVTeNbO mixed metal oxide catalysts, J. Catal. 225(2004) 428-438.[43] E. Heracleous, A. Lemonidou, Ni-me-O mixed metal oxides for the effective oxidative dehydrogenation of ethane to ethylene-effect of promoting metal me, J. Catal. 270(2010) 67-75.[44] P. Ciambelli, L. Lisi, R. Pirone, G. Ruoppolo, G. Russo, Comparison of behaviour of rare earth containing catalysts in the oxidative dehydrogenation of ethane, Catal. Today 61(2000) 317-323.[45] E.M. Kennedy, N.W. Cant, Comparison of the oxidative dehydrogenation of ethane and oxidative coupling of methane over rare earth oxides, Appl. Catal. 75(1991) 321-330.[46] S. Fuchs, L. Leveles, K. Seshan, L. Lefferts, A. Lemonidou, J.A. Lercher, Oxidative dehydrogenation and cracking of ethane and propane over LiDyMg mixed oxides, Top. Catal. 15(2001) 169-174.[47] S. Gaab, J. Find, T.E. Müller, J.A. Lercher, Kinetics and mechanism of the oxidative dehydrogenation of ethane over li/Dy/mg/O/(cl) mixed oxide catalysts, Top. Catal. 46(2007) 101-110.[48] E. Finazzi, C. Di Valentin, G. Pacchioni, M. Chiesa, E. Giamello, H. Gao, J. Lian, T. Risse, H.J. Freund, Properties of alkali metal atoms deposited on a MgO surface:A systematic experimental and theoretical study, Chem. Eur. J. 14(2008) 4404-4414.[49] M. Machli, C. Boudouris, S. Gaab, J. Find, A. Lemonidou, J. Lercher, Kinetic modelling of the gas phase ethane and propane oxidative dehydrogenation, Catal. Today 112(2006) 53-59.[50] C.P. Kumar, S. Gaab, T.E. Müller, J.A. Lercher, Oxidative dehydrogenation of light alkanes on supported molten alkali metal chloride catalysts, Top. Catal. 50(2008) 156-167.[51] X. Lin, C.A. Hoel, W.M. Sachtler, K.R. Poeppelmeier, E. Weitz, Oxidative dehydrogenation (ODH) of ethane with O 2 as oxidant on selected transition metal-loaded zeolites, J. Catal. 265(2009) 54-62.[52] B. Frank, M. Morassutto, R. Schomacker, R. Schlogl, D.S. Su, Oxidative dehydrogenation of ethane over multiwalled carbon nanotubes, ChemCatChem 2(2010) 644-648.[53] L. Kong, J. Li, Q. Liu, Z. Zhao, Q. Sun, J. Liu, Y. Wei, Promoted catalytic performances of highly dispersed V-doped SBA-16 catalysts for oxidative dehydrogenation of ethane to ethylene, J. Energy Chem. 4(2016) 577-586.[54] Y. Liu, P.Cong, R.D. Doolen, S. Guan, V. Markov,L. Woo,S. Zeyb, U. Dingerdissen, Discovery from combinatorial heterogeneous catalysis:A new class of catalyst for ethane oxidative dehydrogenation at low temperatures, Appl. Catal. A Gen. 254(2003) 59-66.[55] F. Klose, M. Joshi, C. Hamel, A. Seidel-Morgenstern, Selective oxidation of ethane over a VOx/γ-Al2O3 catalyst-investigation of the reaction network, Appl. Catal. A Gen. 260(2004) 101-110.[56] E. Heracleous, A. Lemonidou, Ni-Nb-O mixed oxides as highly active and selective catalysts for ethene production via ethane oxidative dehydrogenation. Part I:Characterization and catalytic performance, J. Catal. 237(2006) 162-174.[57] E. Heracleous, A. Lemonidou, Ni-Nb-O mixed oxides as highly active and selective catalysts for ethene production via ethane oxidative dehydrogenation. Part Ⅱ:Mechanistic aspects and kinetic modeling, J. Catal. 237(2006) 175-189.[58] F. Cavani, F. Trifiro, Selective oxidation of light alkanes:Interaction between the catalyst and the gas phase on different classes of catalytic materials, Catal. Today 51(1999) 561-580.[59] R. Grabowski, Kinetics of oxidative dehydrogenation of C2-C3 alkanes on oxide catalysts, Catal. Rev. 48(2006) 199-268.[60] P. Arpentinier, F. Cavani, F. Trifiro, The Technology of Catalytic Oxidations (1, Safety Aspects), Editions TECHNIP, Paris, 2001.[61] A. Darvishi, R. Davand, F. Khorasheh, M. Fattahi, Modeling-based optimization of a fixed-bed industrial reactor for oxidative dehydrogenation of propane, Chin. J. Chem. Eng. 24(2016) 612-622.[62] E. López, E. Heracleous, A.A. Lemonidou, D.O. Borio, Study of a multitubular fixed-bed reactor for ethylene production via ethane oxidative dehydrogenation, Chem. Eng. J. 145(2008) 308-315.[63] M.L. Rodriguez, D.E. Ardissone, E. López, M.N. Pedernera, D.O. Borio, Reactor designs for ethylene production via ethane oxidative dehydrogenation:Comparison of performance, Ind. Eng. Chem. Res. 50(2010)2690-2697.[64] D.-Y. Peng, D.B. Robinson, A new two-constant equation of state, Ind. Eng. Chem. Fundam. 15(1976) 59-64.[65] G.P. Rangaiah, Multi-objective Optimization:Techniques and Applications in Chemical Engineering, World Scientific, 2016.[66] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing, Science 220(1983) 671-680.[67] H.-P. Schwefel, Numerical Optimization of Computer Models, John Wiley & Sons, Inc., 1981[68] D.E. Goldberg, J.H. Holland, Genetic algorithms and machine learning, Mach. Learn. 3(1988) 95-99.[69] K. Price, R. Storn, Differential evolution:A simple evolution strategy for fast optimization, Dr. Dobb's J. 22(1997) 18-24.[70] K. Deb, Multi-objective Optimization Using Evolutionary Algorithms, John Wiley & Sons, 2001. |
[1] | Jindong Dai, Chi Zhai, Jiali Ai, Guangren Yu, Haichao Lv, Wei Sun, Yongzhong Liu. A cellular automata framework for porous electrode reconstruction and reaction-diffusion simulation [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 262-274. |
[2] | Lijuan Zhao, Zhe Tan, Xiaoguang Zhang, Qijun Zhang, Wei Wang, Qiang Deng, Jie Ma, De'an Pan. Research on process modeling and simulation of spent lead paste desulfurization enhanced reactor [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 293-303. |
[3] | Zijie Zhang, Qianyu Zha, Ying Liu, Zhibing Zhang, Jia Liu, Zheng Zhou. Study on the epoxidation of olefins with H2O2 catalyzed by biquaternary ammonium phosphotungstic acid [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 146-154. |
[4] | Danlei Chen, Yiqing Luo, Xigang Yuan. Cascade refrigeration system synthesis based on hybrid simulated annealing and particle swarm optimization algorithm [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 244-255. |
[5] | Hany M. Abd El-Lateef, Mai M. Khalaf, K. Shalabi, Antar A. Abdelhamid. Multicomponent synthesis and designing of tetrasubstituted imidazole compounds catalyzed via ionic-liquid for acid steel corrosion protection: Experimental exploration and theoretical calculations [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 304-319. |
[6] | Wenjuan Yan, Zhenchao You, Kexin Meng, Feng Du, Shuxia Zhang, Xin Jin. Cross-metathesis of biomass to olefins: Molecular catalysis bridging the gap between fossil and bio-energy [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 44-60. |
[7] | Tong Qin, Zhenhao Xi, Ling Zhao, Weikang Yuan. Monte Carlo simulation of sequential structure control of AN-MA-IA aqueous copolymerization by different operation modes [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 231-242. |
[8] | Xiang Wu, Yuzhou Hou, Kanjian Zhang, Ming Cheng. Dynamic optimization of 1,3-propanediol fermentation process: A switched dynamical system approach [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 192-204. |
[9] | Bin Gao, Zhaoqiang Zhang, Jianbo Hu, Jiyu Cui, Liyuan Chen, Xili Cui, Huabin Xing. Efficient separation of C4 olefins using tantalum pentafluor oxide anion-pillared hybrid microporous material [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 49-54. |
[10] | Jason Williams, Hussameldin Ibrahim, Nima Karimi, Kelvin Tsun Wai Ng. Heterogeneous numerical modelling for the auto thermal reforming of crude glycerol in a fixed bed reactor [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 261-268. |
[11] | Tao Tian, Yayan Wang, Bing Liu, Zhaoyang Ding, Xinxi Xu, Meisheng Shi, Jun Ma, Yanjun Zhang, Donghui Zhang. Simulation and experiment of six-bed PSA process for air separation with rotating distribution valve [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 329-337. |
[12] | Xu Hou, Bochong Chen, Zhenzhou Ma, Jintao Zhang, Yuanhang Ning, Donghe Zhang, Liu Zhao, Enxian Yuan, Tingting Cui. Empirical modeling of normal/cyclo-alkanes pyrolysis to produce light olefins [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 389-398. |
[13] | Wenhui Yang, Haoyu Yin, Zhihong Yuan, Bingzhen Chen. Flexibility analysis for continuous ibuprofen manufacturing processes [J]. Chinese Journal of Chemical Engineering, 2022, 51(11): 115-125. |
[14] | Yubai Liu, Zhiyuan Yu, Thomas Pelster, Ting-Tai Lee, Yujun Wang, Guangsheng Luo. Establishment of nucleation and growth model of silica nanostructured particles and comparison with experimental data [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 379-388. |
[15] | Danlei Chen, Yiqing Luo, Xigang Yuan. Refrigeration system synthesis based on de-redundant model by particle swarm optimization algorithm [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 412-422. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||