Chinese Journal of Chemical Engineering ›› 2021, Vol. 33 ›› Issue (5): 104-111.DOI: 10.1016/j.cjche.2020.08.048
• Separation Science and Engineering • Previous Articles Next Articles
Mingming Zhai1, Tomohisa Yoshioka2, Jianhua Yang1, Jinqu Wang1, Dinglin Zhang3, Jinming Lu1, Yan Zhang1
Received:
2020-03-22
Revised:
2020-08-03
Online:
2021-08-19
Published:
2021-05-28
Contact:
Jianhua Yang
Supported by:
Mingming Zhai1, Tomohisa Yoshioka2, Jianhua Yang1, Jinqu Wang1, Dinglin Zhang3, Jinming Lu1, Yan Zhang1
通讯作者:
Jianhua Yang
基金资助:
Mingming Zhai, Tomohisa Yoshioka, Jianhua Yang, Jinqu Wang, Dinglin Zhang, Jinming Lu, Yan Zhang. Molecular dynamics simulation of small gas molecule permeation through CAU-1 membrane[J]. Chinese Journal of Chemical Engineering, 2021, 33(5): 104-111.
Mingming Zhai, Tomohisa Yoshioka, Jianhua Yang, Jinqu Wang, Dinglin Zhang, Jinming Lu, Yan Zhang. Molecular dynamics simulation of small gas molecule permeation through CAU-1 membrane[J]. 中国化学工程学报, 2021, 33(5): 104-111.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2020.08.048
[1] S.R. Batten, N.R. Champness, X.-M. Chen, J. Garcia-Martinez, S. Kitagawa, L. Öhrström, M. O’Keeffe, M. Paik Suh, J. Reedijk, Terminology of metal-organic frameworks and coordination polymers (IUPAC Recommendations 2013), Pure Appl. Chem. 85(8) (2013) 1715-1724. [2] S. Hindocha, The chemistry of metal-organic frameworks: Synthesis, characterization, and applications, Johns. Matthey Technol. Rev. 61(2) (2017) 138-141. [3] Y. Liu, Y. Ban, W. Yang, Microstructural engineering and architectural design of metal-organic framework membranes, Adv. Mater. 29(31) (2017) 1606949. [4] P.Z. Moghadam, T. Islamoglu, S. Goswami, J. Exley, M. Fantham, C.F. Kaminski, R.Q. Snurr, O.K. Farha, D. Fairen-Jimenez, Computer-aided discovery of a metal-organic framework with superior oxygen uptake, Nat. Commun. 9(2018) 1378. [5] C. Duan, Y. Yu, J. Xiao, X. Zhang, L. Li, P. Yang, J. Wu, H. Xi, Water-based routes for synthesis of metal-organic frameworks: A review, Sci. China Mater. 63(5) (2020) 667-685. [6] C. Duan, F. Li, J. Xiao, Z. Liu, C. Li, H. Xi, Rapid room-temperature synthesis of hierarchical porous zeolitic imidazolate frameworks with high space-time yield, Sci. China Mater. 60(12) (2017) 1205-1214. [7] P.Z. Moghadam, A. Li, S.B. Wiggin, A. Tao, A.G.P. Maloney, P.A. Wood, S.C. Ward, D. Fairen-Jimenez, Development of a cambridge structural database subset: A collection of metal-organic frameworks for past, Present, and Future, Chem. Mater. 29(7) (2017) 2618-2625. [8] S.K. Ghosh, Metal-Organic Frameworks (MOFs) for Environmental Applications, Elsevier, Amsterdam, 2019. [9] R.-B. Lin, S. Xiang, B. Li, Y. Cui, G. Qian, W. Zhou, B. Chen, Our journey of developing multifunctional metal-organic frameworks, Coordin. Chem. Rev. 384(2019) 21-36. [10] M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe, O.M. Yaghi, Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage, Science 295(5554) (2002) 469-472. [11] C.X.Chen,Z.W.Wei,J.J.Jiang,S.P.Zheng,H.P.Wang,Q.F.Qiu,C.C.Cao,D.Fenske,C. Y. Su, Dynamic spacer installation for multirole metal-organic frameworks: A new direction toward multifunctional MOFs achieving ultrahigh methane storage working capacity, J. Am. Chem. Soc. 139(17) (2017) 6034-6037. [12] H. Bunzen, F. Kolbe, A. Kalytta-Mewes, G. Sastre, E. Brunner, D. Volkmer, Achieving large volumetric gas storage capacity in metal-organic frameworks by kinetic trapping: A case study of xenon loading in MFU-4, J. Am. Chem. Soc. 140(32) (2018) 10191-10197. [13] A. Modak, S. Jana, Advancement in porous adsorbents for post-combustion CO2 capture, Micropor. Mesopor. Mater. 276(2019) 107-132. [14] G.Y. Jeong, A.K. Singh, M.G. Kim, K.W. Gyak, U. Ryu, K.M. Choi, D.P. Kim, Metal-organic framework patterns and membranes with heterogeneous pores for flow-assisted switchable separations, Nat. Commun. 9(2018) 3968. [15] L. Li, R.B. Lin, R. Krishna, H. Li, S. Xiang, H. Wu, J. Li, W. Zhou, B. Chen, Ethane/ ethylene separation in a metal-organic framework with iron-peroxo sites, Science 362(6413) (2018) 443-446. [16] Y. Ye, Z. Ma, R.B. Lin, R. Krishna, W. Zhou, Q. Lin, Z. Zhang, S. Xiang, B. Chen, Pore space partition within a metal-organic framework for highly efficient C2H2/CO2 separation, J. Am. Chem. Soc. 141(9) (2019) 4130-4136. [17] J.S. Seo, D. Whang, H. Lee, S.I. Jun, J. Oh, Y.J. Jeon, K. Kim, A homochiral metal-organic porous material for enantioselective separation and catalysis, Nature 404(6781) (2000) 982-986. [18] K. Shen, L. Zhang, X. Chen, L. Liu, D. Zhang, Y. Han, J. Chen, J. Long, R. Luque, Y. Li, B. Chen, Ordered macro-microporous metal-organic framework single crystals, Science 359(6372) (2018) 206-210. [19] X. Wang, H. Xiao, A. Li, Z. Li, S. Liu, Q. Zhang, Y. Gong, L. Zheng, Y. Zhu, C. Chen, D. Wang, Q. Peng, L. Gu, X. Han, J. Li, Y. Li, Constructing NiCo/Fe3O4 heteroparticles within MOF-74 for efficient oxygen evolution reactions, J. Am. Chem. Soc. 140(45) (2018) 15336-15341. [20] Y.S. Kang, Y. Lu, K. Chen, Y. Zhao, P. Wang, W.Y. Sun, Metal-organic frameworks with catalytic centers: From synthesis to catalytic application, Coordin. Chem. Rev. 378(2019) 262-280. [21] H. Furukawa, N. Ko, Y.B. Go, N. Aratani, S.B. Choi, E. Choi, A.O. Yazaydin, R.Q. Snurr, M. O’Keeffe, J. Kim, O.M. Yaghi, Ultrahigh porosity in metal-organic frameworks, Science 329(5990) (2010) 424-428. [22] A.O. Yazaydin, R.Q. Snurr, T.H. Park, K. Koh, J. Liu, M.D. Levan, A.I. Benin, P. Jakubczak, M. Lanuza, D.B. Galloway, J.J. Low, R.R. Willis, Screening of metal-organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach, J. Am. Chem. Soc. 131(51) (2009) 18198-18199. [23] E. Argueta, J. Shaji, A. Gopalan, P. Liao, R.Q. Snurr, D.A. Gomez-Gualdron, Molecular building block-based electronic charges for high-throughput screening of metal-organic frameworks for adsorption applications, J. Chem. Theory Comput. 14(1) (2018) 365-376. [24] E. Haldoupis, S. Nair, D.S. Sholl, Finding MOFs for highly selective CO2/N2 adsorption using materials screening based on efficient assignment of atomic point charges, J. Am. Chem. Soc. 134(9) (2012) 4313-4323. [25] D. Nazarian, J.S. Camp, Y.G. Chung, R.Q. Snurr, D.S. Sholl, Large-scale refinement of metal-organic framework structures using density functional theory, Chem. Mater. 29(6) (2017) 2521-2528. [26] D. Wu, Q. Xu, D. Liu, C. Zhong, Exceptional CO2 capture capability and molecular-level segregation in a Li-modified metal organic framework, J. Phys. Chem. C 114(39) (2010) 16611-16617. [27] H. Huang, W. Zhang, F. Yang, B. Wang, Q. Yang, Y. Xie, C. Zhong, J.-R. Li, Enhancing CO2 adsorption and separation ability of Zr(IV)-based metal-organic frameworks through ligand functionalization under the guidance of the quantitative structure-property relationship model, Chem. Eng. J. 289(2016) 247-253. [28] D.-L. Chen, H. Shang, W. Zhu, R. Krishna, Reprint of: Transient breakthroughs of CO2/CH4 and C3H6/C3H8 mixtures in fixed beds packed with Ni-MOF-74, Chem. Eng. Sci. 124(2015) 109-117. [29] Z. Qiao, Q. Xu, J. Jiang, Computational screening of hydrophobic metal-organic frameworks for the separation of H2S and CO2 from natural gas, J. Mater. Chem. A 6(39) (2018) 18898-18905. [30] L.C. Lin, K. Lee, L. Gagliardi, J.B. Neaton, B. Smit, Force-field development from electronic structure calculations with periodic boundary conditions: Applications to gaseous adsorption and transport in metal-organic frameworks, J. Chem. Theory Comput. 10(4) (2014) 1477-1488. [31] D. Wu, Q. Yang, C. Zhong, D. Liu, H. Huang, W. Zhang, G. Maurin, Revealing the structure-property relationships of metal-organic frameworks for CO2 capture from flue gas, Langmuir 28(33) (2012) 12094-12099. [32] Q. Yang, S. Vaesen, F. Ragon, A.D. Wiersum, D. Wu, A. Lago, T. Devic, C. Martineau, F. Taulelle, P.L. Llewellyn, H. Jobic, C. Zhong, C. Serre, G. De Weireld, G. Maurin, A water stable metal-organic framework with optimal features for CO2 capture, Angew. Chem. Int. Edit. 52(39) (2013) 10316-10320. [33] F. Salles, A. Ghoufi, G. Maurin, R.G. Bell, C. Mellot-Draznieks, G. Ferey, Molecular dynamics simulations of breathing MOFs: structural transformations of MIL-53(Cr) upon thermal activation and CO2 adsorption, Angew. Chem. Int. Edit. 47(44) (2008) 8487-8491. [34] G. Ferey, Structural flexibility in crystallized matter: from history to applications, Dalton Trans. 45(10) (2016) 4073-4089. [35] L. Li, Y. Duan, S. Liao, Q. Ke, Z. Qiao, Y. Wei, Adsorption and separation of propane/propylene on various ZIF-8 polymorphs: Insights from GCMC simulations and the ideal adsorbed solution theory (IAST), Chem. Eng. J. 386(2020) 123945. [36] L. Li, T. Zhang, Y. Duan, Y. Wei, C. Dong, L. Ding, Z. Qiao, H. Wang, Selective gas diffusion in two-dimensional MXene lamellar membranes: insights from molecular dynamics simulations, J. Mater. Chem. A 6(25) (2018) 11734-11742. [37] D.E. Coupry, M.A. Addicoat, T. Heine, Extension of the universal force field for metal-organic frameworks, J. Chem. Theory Comput. 12(10) (2016) 5215-5225. [38] J. Heinen, D. Dubbeldam, On flexible force fields for metal-organic frameworks: Recent developments and future prospects, Wires. Comput. Mol. Sci. 8(4) (2018) e1363. [39] H. Yin, J. Wang, Z. Xie, J. Yang, J. Bai, J. Lu, Y. Zhang, D. Yin, J.Y. Lin, A highly permeable and selective amino-functionalized MOF CAU-1 membrane for CO2-N2 separation, Chem. Commun. 50(28) (2014) 3699-3701. [40] Y. Lin, C. Kong, L. Chen, Amine-functionalized metal-organic frameworks: structure, synthesis and applications, RSC Adv. 6(39) (2016) 32598-32614. [41] B. Ghalei, K. Sakurai, Y. Kinoshita, K. Wakimoto, Ali P. Isfahani, Q. Song, K. Doitomi, S. Furukawa, H. Hirao, H. Kusuda, S. Kitagawa, E. Sivaniah, Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles, Nat. Energy 2(7) (2017) 17086. [42] R.W. Flaig, T.M. Osborn Popp, A.M. Fracaroli, E.A. Kapustin, M.J. Kalmutzki, R.M. Altamimi, F. Fathieh, J.A. Reimer, O.M. Yaghi, The chemistry of CO2 capture in an amine-functionalized metal-organic framework under dry and humid conditions, J. Am. Chem. Soc. 139(35) (2017) 12125-12128. [43] The Cambridge Crystallographic Data Contre (CCDC), https://www.ccdc.cam.ac.uk/structures/. [44] T. Ahnfeldt, N. Guillou, D. Gunzelmann, I. Margiolaki, T. Loiseau, G. Ferey, J. Senker, N. Stock, [Al4(OH)2(OCH3)4(H2N-bdc)3] xH2O: A 12-connected porous metal-organic framework with an unprecedented aluminum-containing brick, Angew. Chem. Int. Edit. 48(28) (2009) 5163-5166. [45] C. Kong, H. Du, L. Chen, B. Chen, Nanoscale MOF/organosilica membranes on tubular ceramic substrates for highly selective gas separation, Energy Environ. Sci. 10(8) (2017) 1812-1819. [46] T. Yoshioka, M. Asaeda, T. Tsuru, A molecular dynamics simulation of pressuredriven gas permeation in a micropore potential field on silica membranes, J. Membr. Sci. 293(1-2) (2007) 81-93. [47] T. Yoshioka, M. Kanezashi, T. Tsuru, Micropore size estimation on gas separation membranes: A study in experimental and molecular dynamics, AIChE J. 59(6) (2013) 2179-2194. [48] M.M. Zhai, T. Yoshioka, J.H. Yang, J.M. Lu, D.H. Yin, J.Q. Wang, Preparation and characterization of amorphous carbon (a-C) membranes by molecular dynamics simulation, Desalin. Water Treat. 51(25-27) (2013) 5231-5236. [49] T.F. Willems, C.H. Rycroft, M. Kazi, J.C. Meza, M. Haranczyk, Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials, Micropor. Mesopor. Mater. 149(1) (2012) 134-141. [50] Y.G. Chung, J. Camp, M. Haranczyk, B.J. Sikora, W. Bury, V. Krungleviciute, T. Yildirim, O.K. Farha, D.S. Sholl, R.Q. Snurr, Computation-ready, experimental metal-organic frameworks: a tool to enable high-throughput screening of nanoporous crystals, Chem. Mater. 26(21) (2014) 6185-6192. [51] O. Delgado-Friedrichs, M. O’Keeffe, Identification of and symmetry computation for crystal nets, Acta. Crystallogr. A 59(Pt 4) (2003) 351-360. [52] K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr. 44(6) (2011) 1272-1276. [53] V.A. Blatov, A.P. Shevchenko, D.M. Proserpio, Applied topological analysis of crystal structures with the program package topospro, Cryst. Growth Des. 14(7) (2014) 3576-3586. [54] T. Lu, F. Chen, Multiwfn: A multifunctional wavefunction analyzer, J. Comput. Chem. 33(5) (2012) 580-592. [55] K. Varoon, X. Zhang, B. Elyassi, D.D. Brewer, M. Gettel, S. Kumar, J.A. Lee, S. Maheshwari, A. Mittal, C.Y. Sung, M. Cococcioni, L.F. Francis, A.V. McCormick, K.A. Mkhoyan, M. Tsapatsis, Dispersible exfoliated zeolite nanosheets and their application as a selective membrane, Science 334(6052) (2011) 72-75. [56] Y. Peng, Y. Li, Y. Ban, H. Jin, W. Jiao, X. Liu, W. Yang, Metal-organic framework nanosheets as building blocks for molecular sieving membranes, Science 346(6215) (2014) 1356-1359. [57] S.L. Mayo, B.D. Olafson, W.A. Goddard, DREIDING: a generic force field for molecular simulations, J. Phys. Chem. 94(26) (1990) 8897-8909. [58] C.E. Wilmer, M. Leaf, C.Y. Lee, O.K. Farha, B.G. Hauser, J.T. Hupp, R.Q. Snurr, Large-scale screening of hypothetical metal-organic frameworks, Nat. Chem. 4(2) (2011) 83-89. [59] R.B. Getman, Y.S. Bae, C.E. Wilmer, R.Q. Snurr, Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal-organic frameworks, Chem. Rev. 112(2) (2012) 703-723. [60] O.K. Farha, I. Eryazici, N.C. Jeong, B.G. Hauser, C.E. Wilmer, A.A. Sarjeant, R.Q. Snurr, S.T. Nguyen, A.O. Yazaydin, J.T. Hupp, Metal-organic framework materials with ultrahigh surface areas: is the sky the limit?, J. Am. Chem. Soc. 134(36) (2012) 15016-15021. [61] S.P. Bew, A.D. Burrows, T. Duren, M.F. Mahon, P.Z. Moghadam, V.M. Sebestyen, S. Thurston, Calix [4]arene-based metal-organic frameworks: towards hierarchically porous materials, Chem. Commun. 48(40) (2012) 4824-4826. [62] L. Zhang, Z. Hu, J. Jiang, Sorption-induced structural transition of zeolitic imidazolate framework-8: a hybrid molecular simulation study, J. Am. Chem. Soc. 135(9) (2013) 3722-3728. [63] H. Fang, H. Demir, P. Kamakoti, D.S. Sholl, Recent developments in firstprinciples force fields for molecules in nanoporous materials, J. Mater. Chem. A 2(2) (2014) 274-291. [64] X. Wu, J. Huang, W. Cai, M. Jaroniec, Force field for ZIF-8 flexible frameworks: atomistic simulation of adsorption, diffusion of pure gases as CH4, H2, CO2 and N2, RSC Adv. 4(32) (2014) 16503-16511. [65] P.G.M. Mileo, S. Devautour-Vinot, G. Mouchaham, F. Faucher, N. Guillou, A. Vimont, C. Serre, G. Maurin, Proton-conducting phenolate-based Zr metal-organic framework: a joint experimental-modeling investigation, J. Phys. Chem. C 120(43) (2016) 24503-24510. [66] A.W. Thornton, R. Babarao, A. Jain, F. Trousselet, F.X. Coudert, Defects in metal-organic frameworks: a compromise between adsorption and stability?, Dalton Trans. 45(10) (2016) 4352-4359. [67] S. Andersson, P.-E. Larsson, Atomic-scale modeling of hydrogen storage in the UiO-66 and UiO-67 metal-organic frameworks, Micropor. Mesopor. Mater. 224(2016) 349-359. [68] L. Xia, Q. Liu, Adsorption of H2 on aluminum-based metal-organic frameworks: A computational study, Comp. Mater. Sci. 126(2017) 176-181. [69] M.J. Cliffe, E. Castillo-Martinez, Y. Wu, J. Lee, A.C. Forse, F.C.N. Firth, P.Z. Moghadam, D. Fairen-Jimenez, M.W. Gaultois, J.A. Hill, O.V. Magdysyuk, B. Slater, A.L. Goodwin, C.P. Grey, Metal-organic nanosheets formed via defectmediated transformation of a hafnium metal-organic framework, J. Am. Chem. Soc. 139(15) (2017) 5397-5404. [70] P.Q. Liao, N.Y. Huang, W.X. Zhang, J.P. Zhang, X.M. Chen, Controlling guest conformation for efficient purification of butadiene, Science 356(6343) (2017) 1193-1196. [71] F. Chen, X. Zeng, D. Cao, Nitrogen-doped nanoporous carbons for selective separation of Ar/Kr/Xe/Rn gases: an experiment-based simulation study, J. Phys. Chem. C 121(30) (2017) 16308-16315. [72] J. Yu, L.H. Xie, J.R. Li, Y. Ma, J.M. Seminario, P.B. Balbuena, CO2 capture and separations using MOFs: computational and experimental studies, Chem. Rev. 117(14) (2017) 9674-9754. [73] S. Wang, J.S. Lee, M. Wahiduzzaman, J. Park, M. Muschi, C. Martineau-Corcos, A. Tissot, K.H. Cho, J. Marrot, W. Shepard, G. Maurin, J.S. Chang, C. Serre, A robust large-pore zirconium carboxylate metal-organic framework for energy-efficient water-sorption-driven refrigeration, Nat. Energy 3(11) (2018) 985-993. [74] J. Glover, E. Besley, Pore-filling contamination in metal-organic frameworks, Phys. Chem. Chem. Phys. 20(36) (2018) 23616-23624. [75] J. Hu, Y. Liu, J. Liu, C. Gu, D. Wu, High CO2 adsorption capacities in UiO type MOFs comprising heterocyclic ligand, Micropor. Mesopor. Mater. 256(2018) 25-31. [76] I. Skarmoutsos, M. Eddaoudi, G. Maurin, Highly tunable sulfur hexafluoride separation by interpenetration control in metal organic frameworks, Micropor. Mesopor. Mater. 281(2019) 44-49. [77] C.F. Macrae, P.R. Edgington, P. McCabe, E. Pidcock, G.P. Shields, R. Taylor, M. Towler, J. van de Streek, Mercury: visualization and analysis of crystal structures, J. Appl. Crystallogr. 39(3) (2006) 453-457. [78] Y. Peng, Y. Li, Y. Ban, W. Yang, Two-dimensional metal-organic framework nanosheets for membrane-based gas separation, Angew. Chem. Int. Ed. Engl. 56(33) (2017) 9757-9761. [79] J.J. Zheng, S. Kusaka, R. Matsuda, S. Kitagawa, S. Sakaki, Characteristic features of CO2 and CO adsorptions to paddle-wheel type porous coordination polymer, J. Phys. Chem. C 121(35) (2017) 19129-19139. [80] H.X. Wu, Y.W. Chen, D.F. Lv, R.F. Shi, Y. Chen, Z. Li, Q.B. Xia, An indium-based ethane-trapping MOF for efficient selective separation of C2H6/C2H4 mixture, Sep. Purif. Technol. 212(2019) 51-56. [81] T. Lu, Q. Chen, Van der waals potential: An important complement to molecular electrostatic potential in studying intermolecular interactions, J. Mol. Model 26(1) (2020) 1-9. [82] P. Politzer, J.S. Murray, The fundamental nature and role of the electrostatic potential in atoms and molecules, Theor. Chem. Acc. 108(3) (2002) 134-142. |
[1] | Jianhua Feng, Sen Xiong, Li Ren, Yong Wang. Atomic layer deposition of TiO2 on carbon-nanotubes membrane for capacitive deionization removal of chromium from water [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 15-21. |
[2] | Jun Pan, Xianli Xu, Zhaohui Wang, Shi-Peng Sun, Zhaoliang Cui, Lassaad Gzara, Iqbal Ahmed, Omar Bamaga, Mohammed Albeirutty, Enrico Drioli. Innovative hydrophobic/hydrophilic perfluoropolyether (PFPE)/polyvinylidene fluoride (PVDF) composite membrane for vacuum membrane distillation [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 248-257. |
[3] | Ding-Ming Xue, Wen-Juan Zhang, Xiao-Qin Liu, Shi-Chao Qi, Lin-Bing Sun. Fabrication of azobenzene-functionalized porous polymers for selective CO2 capture [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 24-30. |
[4] | Xiaobin Chen, Yuting Tang, Chuncheng Ke, Chaoyue Zhang, Sichun Ding, Xiaoqian Ma. CO2 capture by double metal modified CaO-based sorbents from pyrolysis gases [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 40-49. |
[5] | Hojatollah Moradi, Hedayat Azizpour, Hossein Bahmanyar, Mohammad Emamian. Molecular dynamic simulation of carbon dioxide, methane, and nitrogen adsorption on Faujasite zeolite [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 70-76. |
[6] | Haiyan Jiang, Lu Bai, Bingbing Yang, Shaojuan Zeng, Haifeng Dong, Xiangping Zhang. The effect of protic ionic liquids incorporation on CO2 separation performance of Pebax-based membranes [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 169-176. |
[7] | Xueting Liu, Chunhui Hu, Jingjing Wu, Peng Cui, Fengyu Wei. Defective NH2-UiO-66 (Zr) effectively converting CO2 into cyclic carbonate under ambient pressure, solvent-free and co-catalyst-free conditions [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 222-229. |
[8] | Wanqiao Liang, Jihuan Huang, Penny Xiao, Ranjeet Singh, Jining Guo, Leila Dehdari, Gang Kevin Li. Amine-immobilized HY zeolite for CO2 capture from hot flue gas [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 335-342. |
[9] | Yachen Deng, Shifu Wang, Yanqiang Huang, Xuning Li. Structural reconstruction of Sn-based metal-organic frameworks for efficient electrochemical CO2 reduction to formate [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 353-359. |
[10] | Xiuxin Yu, Bing Liu, Yuanhui Shen, Donghui Zhang. Design and experiment of high-productivity two-stage vacuum pressure swing adsorption process for carbon capturing from dry flue gas [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 378-391. |
[11] | Tongan Yan, Minman Tong, Qingyuan Yang, Dahuan Liu, Yandong Guo, Chongli Zhong. Large-scale simulations of CO2 diffusion in metal-organic frameworks with open Cu sites [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 1-9. |
[12] | Jinlong Li, Xiaoqing Wang, Puxu Liu, Xiaohua Liu, Libo Li, Jinping Li. Shaping of metal-organic frameworks through a calcium alginate method towards ethylene/ethane separation [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 17-24. |
[13] | Puxu Liu, Yong Wang, Yang Chen, Xiaoqing Wang, Jiangfeng Yang, Libo Li, Jinping Li. Stable titanium metal-organic framework with strong binding affinity for ethane removal [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 35-41. |
[14] | Xionghui Liu, Jianfeng Du, Yu Ye, Yuchuan Liu, Shun Wang, Xianyu Meng, Xiaowei Song, Zhiqiang Liang, Wenfu Yan. Boosting selective C2H2/CH4, C2H4/CH4 and CO2/CH4 adsorption performance via 1,2,3-triazole functionalized triazine-based porous organic polymers [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 64-72. |
[15] | Jiajia Wang, Lizhi Wang, You Wang, Du Zhang, Qin Xiao, Jianhan Huang, You-Nian Liu. Recent progress in porous organic polymers and their application for CO2 capture [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 91-103. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||