Chinese Journal of Chemical Engineering ›› 2021, Vol. 39 ›› Issue (11): 154-161.DOI: 10.1016/j.cjche.2021.04.037
• Catalysis, Kinetics and Reaction Engineering • Previous Articles Next Articles
Majid Masteri-Farahani, Samaneh Shahsavarifar
Received:
2020-04-16
Revised:
2020-12-14
Online:
2021-12-27
Published:
2021-11-28
Contact:
Majid Masteri-Farahani
Supported by:
Majid Masteri-Farahani, Samaneh Shahsavarifar
通讯作者:
Majid Masteri-Farahani
基金资助:
Majid Masteri-Farahani, Samaneh Shahsavarifar. Chemical functionalization of chitosan biopolymer and chitosan-magnetite nanocomposite with sulfonic acid for acid-catalyzed reactions[J]. Chinese Journal of Chemical Engineering, 2021, 39(11): 154-161.
Majid Masteri-Farahani, Samaneh Shahsavarifar. Chemical functionalization of chitosan biopolymer and chitosan-magnetite nanocomposite with sulfonic acid for acid-catalyzed reactions[J]. 中国化学工程学报, 2021, 39(11): 154-161.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.04.037
[1] J.F. Jiang, C.Y. He, S. Wang, H. Jiang, J.D. Li, L.S. Li, Recyclable ferromagnetic chitosan nanozyme for decomposing phenol, Carbohydr. Polym. 198(2018) 348-353. [2] Z.X. Feng, K. Odelius, M. Hakkarainen, Tunable chitosan hydrogels for adsorption:Property control by biobased modifiers, Carbohydr. Polym. 196(2018) 135-145. [3] E.A. Abdelrahman, R.M. Hegazey, Exploitation of Egyptian insecticide cans in the fabrication of Si/Fe nanostructures and their chitosan polymer composites for the removal of Ni(II), Cu(II), and Zn(II) ions from aqueous solutions, Compos. Part B:Eng. 166(2019) 382-400. [4] G. Mittal, K.Y. Rhee, S.J. Park, D. Hui, Generation of the pores on graphene surface and their reinforcement effects on the thermal and mechanical properties of chitosan-based composites, Compos. Part B:Eng. 114(2017) 348-355. [5] S. Lv, J.J. Liu, Q.F. Zhou, L. Huang, T. Sun, Synthesis of modified chitosan superplasticizer by amidation and sulfonation and its application performance and working mechanism, Ind. Eng. Chem. Res. 53(10) (2014) 3908-3916. [6] H. Wu, X.S. Li, C.H. Zhao, X.H. Shen, Z.Y. Jiang, X.F. Wang, Chitosan/sulfonated polyethersulfone-polyethersulfone (CS/SPES-PES) composite membranes for pervaporative dehydration of ethanol, Ind. Eng. Chem. Res. 52(16) (2013) 5772-5780. [7] C.S. Rao Vusa, V. Manju, K. Aneesh, S. Berchmans, A. Palaniappan, Tailored interfacial architecture of chitosan modified glassy carbon electrodes facilitating selective, nanomolar detection of dopamine, RSC Adv. 6(6) (2016) 4818-4825. [8] A. Ghaee, J. Nourmohammadi, P. Danesh, Novel chitosan-sulfonated chitosanpolycaprolactone-calcium phosphate nanocomposite scaffold, Carbohydr. Polym. 157(2017) 695-703. [9] Z.M. Sun, C.G. Shi, X.Y. Wang, Q. Fang, J.Y. Huang, Synthesis, characterization, and antimicrobial activities of sulfonated chitosan, Carbohydr. Polym. 155(2017) 321-328. [10] M. Croce, S. Conti, C. Maake, G.R. Patzke, Synthesis and screening of N-acyl thiolated chitosans for antibacterial applications, Carbohydr. Polym. 151(2016) 1184-1192. [11] J.H. Byeon, Aerosol nanoencapsulation:Single-pass floating self-assembly of biofunctional hybrid nanoplatforms, ACS Appl. Mater. Interfaces 8(28) (2016) 17757-17762. [12] K. Azizi, N. Esfandiary, M. Karimi, E. Yazdani, A. Heydari, Imidazolium chloride immobilized on copper acetylacetonate-grafted magnetic chitosan as a new metal/ionic liquid bifunctional catalyst for selective oxidation of benzyl alcohols in water, RSC Adv. 6(92) (2016) 89313-89321. [13] Z.Q. Chen, X.M. Wang, Y. Chen, Z.H. Xue, Q.W. Guo, Q.Q. Ma, H.X. Chen, Preparation and characterization of a novel nanocomposite with double enzymes immobilized on magnetic Fe3O4-chitosan-sodium tripolyphosphate, Colloids Surf B Biointerfaces 169(2018) 280-288. [14] Y. Rangraz, F. Nemati, A. Elhampour, Magnetic chitosan composite as a green support for anchoring diphenyl diselenide as a biocatalyst for the oxidation of sulfides, Int. J. Biol. Macromol. 117(2018) 820-830. [15] M. Mohammadikish, S.H. Hashemi, Functionalization of magnetite:chitosan nanocomposite with molybdenum complexes:New efficient catalysts for epoxidation of olefins, J. Mater. Sci. 54(8) (2019) 6164-6173. [16] L.M. Dai, Q. Zhao, M.L. Fang, R.F. Liu, M.F. Dong, T.S. Jiang, Catalytic activity comparison of Zr-SBA-15 immobilized by a Brønsted-Lewis acidic ionic liquid in different esterifications, RSC Adv. 7(51) (2017) 32427-32435. [17] C. Pahl, C. Pasel, M. Luckas, D. Bathen, Adsorptive water removal from primary alcohols and acetic acid esters in the ppm-region, J. Chem. Eng. Data 57(9) (2012) 2465-2471. [18] A.Q. Wang, X.L. Wu, J.X. Wang, H. Pan, X.Y. Tian, Y.L. Xing, A novel solid acid catalyst synthesized from ZnAl2O4 spinel and its application in the esterification of acetic acid and n-butyl alcohol, RSC Adv. 5(25) (2015) 19652-19658. [19] G. Mitran, T. Yuzhakova, I. Popescu, I.C. Marcu, Study of the esterification reaction of acetic acid with n-butanol over supported WO3 catalysts, J. Mol. Catal. A:Chem. 396(2015) 275-281. [20] G. Mitran, O.D. Pavel, I.C. Marcu, Molybdena-vanadia supported on alumina:Effective catalysts for the esterification reaction of acetic acid with n-butanol, J. Mol. Catal. A:Chem. 370(2013) 104-110. [21] D. Singh, R. Bhoi, A. Ganesh, S. Mahajani, Synthesis of biodiesel from vegetable oil using supported metal oxide catalysts, Energy Fuels 28(4) (2014) 2743- 2753. [22] M.S. Khayoon, B.H. Hameed, Solventless acetalization of glycerol with acetone to fuel oxygenates over Ni-Zr supported on mesoporous activated carbon catalyst, Appl. Catal. A:Gen. 464-465(2013) 191-199. [23] P.S. Reddy, P. Sudarsanam, B. Mallesham, G. Raju, B.M. Reddy, Acetalisation of glycerol with acetone over zirconia and promoted zirconia catalysts under mild reaction conditions, J. Ind. Eng. Chem. 17(3) (2011) 377-381. [24] B. Liu, D.R. Slocombe, J. Wang, A. Aldawsari, S. Gonzalez-Cortes, J. Arden, V.L. Kuznetsov, H. AlMegren, M. AlKinany, T. Xiao, P.P. Edwards, Microwaves effectively examine the extent and type of coking over acid zeolite catalysts, Nat. Commun. 8(1) (2017) 514. [25] K. Arias, A. Garcia-Ortiz, M.J. Climent, A. Corma, S. Iborra, Mutual valorization of 5-hydroxymethylfurfural and glycerol into valuable diol monomers with solid acid catalysts, ACS Sustain. Chem. Eng. 6(3) (2018) 4239-4245. [26] M. Tyufekchiev, P. Duan, K. Schmidt-Rohr, S. Granados Focil, M.T. Timko, M.H. Emmert, Cellulase-inspired solid acids for cellulose hydrolysis:Structural explanations for high catalytic activity, ACS Catal. 8(2) (2018) 1464-1468. [27] L.J. Konwar, A. Samikannu, P. Mäki-Arvela, D. Boström, J.P. Mikkola, Lignosulfonate-based macro/mesoporous solid protonic acids for acetalization of glycerol to bio-additives, Appl. Catal. B:Environ. 220(2018) 314-323. [28] F. Su, L. Ma, Y.H. Guo, W. Li, Preparation of ethane-bridged organosilica group and keggin type heteropoly acid co-functionalized ZrO2 hybrid catalyst for biodiesel synthesis from eruca sativa gars oil, Catal. Sci. Technol. 2(11) (2012) 2367. [29] F.M. Zhang, Y. Jin, J. Shi, Y.J. Zhong, W.D. Zhu, M.S. El-Shall, Polyoxometalates confined in the mesoporous cages of metal-organic framework MIL-100(Fe):Efficient heterogeneous catalysts for esterification and acetalization reactions, Chem. Eng. J. 269(2015) 236-244. [30] L. Chen, B. Nohair, D.Y. Zhao, S. Kaliaguine, Highly efficient glycerol acetalization over supported heteropoly acid catalysts, ChemCatChem 10(8) (2018) 1918-1925. [31] L.J. Liu, Q.J. Luan, J. Lu, D.M. Lv, W.Z. Duan, X. Wang, S.W. Gong, 8-Hydroxy-2- methylquinoline-modified H4SiW12O40:A reusable heterogeneous catalyst for acetal/ketal formation, RSC Adv. 8(46) (2018) 26180-26187. [32] H.P. Winoto, Z.A. Fikri, J.M. Ha, Y.K. Park, H. Lee, D.J. Suh, J. Jae, Heteropolyacid supported on Zr-Beta zeolite as an active catalyst for one-pot transformation of furfural to c-valerolactone, Appl. Catal. B:Environ. 241(2019) 588-597. [33] R.Y. Zhong, B.F. Sels, Sulfonated mesoporous carbon and silica-carbon nanocomposites for biomass conversion, Appl. Catal. B:Environ. 236(2018) 518-545. [34] C.H. Tsai, M.Z. Xu, P. Kunal, B.G. Trewyn, Aerobic oxidative esterification of primary alcohols over Pd-Au bimetallic catalysts supported on mesoporous silica nanoparticles, Catal. Today 306(2018) 81-88. [35] Z.J. Tai, M.A. Isaacs, C.M.A. Parlett, A.F. Lee, K. Wilson, High activity magnetic core-mesoporous shell sulfonic acid silica nanoparticles for carboxylic acid esterification, Catal. Commun. 92(2017) 56-60. [36] R.Y. Li, H.Y. Song, J. Chen, Propylsulfonic acid functionalized SBA-15 mesoporous silica as efficient catalysts for the acetalization of glycerol, Catalysts 8(8) (2018) 297. [37] C.S. Caetano, M. Caiado, J. Farinha, I.M. Fonseca, A.M. Ramos, J. Vital, J.E. Castanheiro, Esterification of free fatty acids over chitosan with sulfonic acid groups, Chem. Eng. J. 230(2013) 567-572. [38] D.S. Jiang, S.Y. Long, J. Huang, H.Y. Xiao, J.Y. Zhou, Immobilization of Pycnoporus sanguineus laccase on magnetic chitosan microspheres, Biochem. Eng. J. 25(1) (2005) 15-23. [39] X.N. Zhao, G.F. Hu, M. Tang, T.T. Shi, X.L. Guo, T.T. Li, Z.H. Zhang, A highly efficient and recyclable cobalt ferrite chitosan sulfonic acid magnetic nanoparticle for one-pot, four-component synthesis of 2H-indazolo[2, 1-b] phthalazine-triones, RSC Adv. 4(93) (2014) 51089-51097. [40] K. Kondo, S.I. Nakagawa, M. Matsumoto, T. Yamashita, I. Furukawa, Selective adsorption of metal ions on novel chitosan-supported sulfonic acid resin, J. Chem. Eng. Japan 30(5) (1997) 846-851. [41] E.P. Ng, S.N. Mohd Subari, O. Marie, R.R. Mukti, J.C. Juan, Sulfonic acid functionalized MCM-41 as solid acid catalyst for tert-butylation of hydroquinone enhanced by microwave heating, Appl. Catal. A:Gen. 450(2013) 34-41. [42] L. Hermida, A.Z. Abdullah, A.R. Mohamed, Synthesis of monoglyceride through glycerol esterification with lauric acid over propyl sulfonic acid post-synthesis functionalized SBA-15 mesoporous catalyst, Chem. Eng. J. 174(2-3) (2011) 668-676. [43] J.A. Posada, C.A. Cardona, O. Giraldo, Comparison of acid sulfonic mesostructured silicas for 1-butylacetate synthesis, Mater. Chem. Phys. 121(1-2) (2010) 215-222. [44] M.L. Testa, V. La Parola, A.M. Venezia, Esterification of acetic acid with butanol over sulfonic acid-functionalized hybrid silicas, Catal. Today 158(1-2) (2010) 109-113. [45] S.J. Miao, B.H. Shanks, Mechanism of acetic acid esterification over sulfonic acid-functionalized mesoporous silica, J. Catal. 279(1) (2011) 136-143. [46] A. Aldana-Pérez, L. Lartundo-Rojas, R. Gómez, M.E. Niño-Gómez, Sulfonic groups anchored on mesoporous carbon Starbons-300 and its use for the esterification of oleic acid, Fuel 100(2012) 128-138. [47] K.S. Paripoorani, G. Ashwin, P. Vengatapriya, V. Ranjitha, S. Rupasree, V. Vasanth Kumar, V. Vinoth Kumar, Insolubilization of inulinase on magnetite chitosan microparticles, an easily recoverable and reusable support, J. Mol. Catal. B Enzym. 113(2015) 47-55. [48] J.H. Jeon, R.K. Cheedarala, C.D. Kee, I.K. Oh, Dry-type artificial muscles based on pendent sulfonated chitosan and functionalized graphene oxide for greatly enhanced ionic interactions and mechanical stiffness, Adv. Funct. Mater. 23(48) (2013) 6007-6018. [49] S.P. Rwei, C.C. Lien, Synthesis and viscoelastic characterization of sulfonated chitosan solutions, Colloid Polym. Sci. 292(4) (2014) 785-795. [50] A. Shahzad, W. Miran, K. Rasool, M. Nawaz, J. Jang, S.R. Lim, D.S. Lee, Heavy metals removal by EDTA-functionalized chitosan graphene oxide nanocomposites, RSC Adv. 7(16) (2017) 9764-9771. [51] F.J. Liu, J. Sun, Q. Sun, L.F. Zhu, L. Wang, X.J. Meng, C.Z. Qi, F.S. Xiao, Hightemperature synthesis of magnetically active and SO3H-functionalized ordered mesoporous carbon with good catalytic performance, Catal. Today 186(1) (2012) 115-120. [52] F.J. Liu, J. Sun, L.F. Zhu, X.J. Meng, C.Z. Qi, F.S. Xiao, Sulfated graphene as an efficient solid catalyst for acid-catalyzed liquid reactions, J. Mater. Chem. 22(12) (2012) 5495. [53] J. Lunagariya, A. Dhar, R.L. Vekariya, Efficient esterification of n-butanol with acetic acid catalyzed by the Brönsted acidic ionic liquids:Influence of acidity, RSC Adv. 7(9) (2017) 5412-5420. [54] F.C. Zheng, Q.W. Chen, L. Hu, N. Yan, X.K. Kong, Synthesis of sulfonic acidfunctionalized Fe3O4@C nanoparticles as magnetically recyclable solid acid catalysts for acetalization reaction, Dalton Trans. 43(3) (2014) 1220-1227. [55] Z. Han, Y.Y. Yu, Y.B. Zhang, B. Dong, A.G. Kong, Y.K. Shan, Al-coordination polymer-derived nanoporous nitrogen-doped carbon microfibers as metalfree catalysts for oxygen electroreduction and acetalization reactions, J. Mater. Chem. A 3(47) (2015) 23716-23724. |
[1] | Shuo Li, Jianlin Cao, Xiang Feng, Yupeng Du, De Chen, Chaohe Yang, Wenhua Wang, Wanzhong Ren. Insights into the confinement effect on isobutane alkylation with C4 olefin catalyzed by zeolite catalyst: A combined theoretical and experimental study [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 174-184. |
[2] | Yingmeng Zhang, Luting Liu, Qingwei Deng, Wanlin Wu, Yongliang Li, Xiangzhong Ren, Peixin Zhang, Lingna Sun. Hybrid CuO-Co3O4 nanosphere/RGO sandwiched composites as anode materials for lithium-ion batteries [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 185-192. |
[3] | Zhouxin Chang, Feng Yu, Zhisong Liu, Zijun Wang, Jiangbing Li, Bin Dai, Jinli Zhang. Ni-Al mixed metal oxide with rich oxygen vacancies: CO methanation performance and density functional theory study [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 73-83. |
[4] | Weizhou Jiao, Xingyue Wei, Shengjuan Shao, Youzhi Liu. Catalytic decomposition and mass transfer of aqueous ozone promoted by Fe-Mn-Cu/γ-Al2O3 in a rotating packed bed [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 133-142. |
[5] | Xiaojiang Liang, Fengjiao Wu, Qinglong Xie, Zhenyu Wu, Jinjin Cai, Congwen Zheng, Junhong Fu, Yong Nie. Insights into biobased epoxidized fatty acid isobutyl esters from biodiesel: Preparation and application as plasticizer [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 41-50. |
[6] | Feng Guo, Zhihao Chen, Xiliu Huang, Longwen Cao, Xiaofang Cheng, Weilong Shi, Lizhuang Chen. Ternary Ni2P/Bi2MoO6/g-C3N4 composite with Z-scheme electron transfer path for enhanced removal broad-spectrum antibiotics by the synergistic effect of adsorption and photocatalysis [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 157-168. |
[7] | Mingxia Tian, Aili Wang, Hengbo Yin. Evolution of copper nanowires through coalescing of copper nanoparticles induced by aliphatic amines and their electrical conductivities in polyester films [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 284-291. |
[8] | Qing Shu, Xinyuan Liu, Yanting Huo, Yuhui Tan, Caixia Zhang, Laixi Zou. Construction of a Brönsted-Lewis solid acid catalyst La-PW-SiO2/SWCNTs based on electron withdrawing effect of La(III) on π bond of SWCNTs for biodiesel synthesis from esterification of oleic acid and methanol [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 351-362. |
[9] | Fanfan Shen, Lizhen Chen, Pengbao Lian, Jianlong Wang, Duanlin Cao. Solubility and metastable zone width measurement of 2,4-diaminobenzenesulfonic acid in (H2SO4 + H2O) system [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 384-391. |
[10] | Qi Liu, Gao Cheng, Ming Sun, Weixiong Yu, Xiaohong, Zeng, Shichang Tang, Yongfeng li, Lin Yu. A facile preparation of hausmannite as a high-performance catalyst for toluene combustion [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 392-401. |
[11] | Zhen Lu, Jie He, Bogeng Guo, Yulai Zhao, Jingyu Cai, Longqiang Xiao, Linxi Hou. Efficient homogenous catalysis of CO2 to generate cyclic carbonates by heterogenous and recyclable polypyrazoles [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 110-115. |
[12] | Di Gao, Yibo Zhi, Liyuan Cao, Liang Zhao, Jinsen Gao, Chunming Xu, Mingzhi Ma, Pengfei Hao. Influence of zinc state on the catalyst properties of Zn/HZSM-5 zeolite in 1-hexene aromatization and cyclohexane dehydrogenation [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 124-134. |
[13] | Xin Li, Song Hong, Leiduan Hao, Zhenyu Sun. Cadmium-based metal-organic frameworks for high-performance electrochemical CO2 reduction to CO over wide potential range [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 143-151. |
[14] | Yanliang Zhou, Qianjin Sai, Zhenni Tan, Congying Wang, Xiuyun Wang, Bingyu Lin, Jun Ni, Jianxin Lin, Lilong Jiang. Highly efficient subnanometer Ru-based catalyst for ammonia synthesis via an associative mechanism [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 177-184. |
[15] | Xuanyi Jia, Xiaomin Hu, Qiao Wang, Baiquan Chen, Xingyue Xie, Lihong Huang. Auto-thermal reforming of acetic acid for hydrogen production by ZnxNiyCrOm±δ catalysts: Effect of Cr promoted Ni-Zn intermetallic compound [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 216-221. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||