Chinese Journal of Chemical Engineering ›› 2024, Vol. 70 ›› Issue (6): 251-260.DOI: 10.1016/j.cjche.2024.03.016
Previous Articles Next Articles
Xiaoxiao Dong1, Zhuohong He2, Xu Yan1,2, Dong Gao2, Jingyu Jiao2, Yan Sun2, Haibin Wang2, Haibin Qu1
Received:
2024-01-12
Revised:
2024-02-26
Online:
2024-08-05
Published:
2024-06-28
Contact:
Haibin Qu,E-mail:quhb@zju.edu.cn
Supported by:
Xiaoxiao Dong1, Zhuohong He2, Xu Yan1,2, Dong Gao2, Jingyu Jiao2, Yan Sun2, Haibin Wang2, Haibin Qu1
通讯作者:
Haibin Qu,E-mail:quhb@zju.edu.cn
基金资助:
Xiaoxiao Dong, Zhuohong He, Xu Yan, Dong Gao, Jingyu Jiao, Yan Sun, Haibin Wang, Haibin Qu. Real-time model correction using Kalman filter for Raman-controlled cell culture processes[J]. Chinese Journal of Chemical Engineering, 2024, 70(6): 251-260.
Xiaoxiao Dong, Zhuohong He, Xu Yan, Dong Gao, Jingyu Jiao, Yan Sun, Haibin Wang, Haibin Qu. Real-time model correction using Kalman filter for Raman-controlled cell culture processes[J]. 中国化学工程学报, 2024, 70(6): 251-260.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2024.03.016
[1] T.K. Ha, D. Kim, C.L. Kim, L.M. Grav, G.M. Lee, Factors affecting the quality of therapeutic proteins in recombinant Chinese hamster ovary cell culture, Biotechnol. Adv. 54 (2022) 107831. https://doi.org/10.1016/j.biotechadv.2021.107831. [2] Z. Liu, X. Jiang, S. Li, J. Chen, C. Jiang, K. Wang, C. Zhang, B. Wang, A disposable impedance-based sensor for in-line cell growth monitoring in CAR-T cell manufacturing, Bioelectrochem 152 (2023) 108416. https://doi.org/10.1016/j.bioelechem.2023.108416. [3] S. Dahotre, L. Dai, K. Kjenstad, C. Stella, J. Camperi, Real-time monitoring of antibody quality attributes for cell culture production processes in bioreactors via integration of an automated sampling technology with multi-dimensional liquid chromatography mass spectrometry, Journal of Chromatography A 1672 (2022) 463067. https://doi.org/10.1016/j.chroma.2022.463067. [4] J. Randek, C.-F. Mandenius, In situ scanning capacitance sensor with spectral analysis reveals morphological states in cultures for production of biopharmaceuticals, Sensors and Actuators B: Chemical 313 (2020) 128052. https://doi.org/10.1016/j.snb.2020.128052. [5] M. Lederle, M. Tric, T. Roth, L. Schutte, A. Rattenholl, D. Lutkemeyer, S. Wolfl, T. Werner, P. Wiedemann, Continuous optical in-line glucose monitoring and control in CHO cultures contributes to enhanced metabolic efficiency while maintaining darbepoetin alfa product quality, Biotechnology Journal 16 (2021) 2100088. https://doi.org/10.1002/biot.202100088. [6] M. Tric, M. Lederle, L. Neuner, I. Dolgowjasow, P. Wiedemann, S. Wolfl, T. Werner, Optical biosensor optimized for continuous in-line glucose monitoring in animal cell culture, Anal Bioanal Chem 409 (2017) 5711-5721. https://doi.org/10.1007/s00216-017-0511-7. [7] D.P. Wasalathanthri, M.S. Rehmann, Y. Song, Y. Gu, L. Mi, C. Shao, L. Chemmalil, J. Lee, S. Ghose, M.C. Borys, J. Ding, Z.J. Li, Technology outlook for real-time quality attribute and process parameter monitoring in biopharmaceutical development-A review, Biotechnol. Bioeng 117 (2020) 3182-3198. https://doi.org/10.1002/bit.27461. [8] A. Guerra, M. von Stosch, J. Glassey, Toward biotherapeutic product real-time quality monitoring, Crit. Rev. Biotechnol 39 (2019) 289-305. https://doi.org/10.1080/07388551.2018.1524362. [9] K.A. Esmonde-White, M. Cuellar, I.R. Lewis, The role of Raman spectroscopy in biopharmaceuticals from development to manufacturing, Anal Bioanal Chem 414 (2022) 969-991. https://doi.org/10.1007/s00216-021-03727-4. [10] A. Yousefi-Darani, O. Paquet-Durand, A. Von Wrochem, J. Classen, J. Trankle, M. Mertens, J. Snelders, V. Chotteau, M. Makinen, A. Handl, M. Kadisch, D. Lang, P. Dumas, B. Hitzmann, Generic Chemometric Models for Metabolite Concentration Prediction Based on Raman Spectra, Sensors 22 (2022) 5581. https://doi.org/10.3390/s22155581. [11] L. Gibbons, C. Rafferty, K. Robinson, M. Abad, F. Maslanka, N. Le, J. Mo, K. Clark, F. Madden, R. Hayes, B. McCarthy, C. Rode, J. O’Mahony, R. Rea, C. O’Mahony Hartnett, Raman based chemometric model development for glycation and glycosylation real time monitoring in a manufacturing scale CHO cell bioreactor process, Biotechnol. Progr 38 (2022). https://doi.org/10.1002/btpr.3223. [12] Z. Liu, Z. Zhang, Y. Qin, G. Chen, J. Hu, Q. Wang, W. Zhou, The application of Raman spectroscopy for monitoring product quality attributes in perfusion cell culture, Biochem. Eng. J. 173 (2021) 108064. https://doi.org/10.1016/j.bej.2021.108064. [13] C. Rafferty, J. O’Mahony, B. Burgoyne, R. Rea, K.M. Balss, D.C. Latshaw II, Raman spectroscopy as a method to replace off-line pH during mammalian cell culture processes, Biotechnol. Bioeng 117 (2020) 146-156. https://doi.org/10.1002/bit.27197. [14] S. Andre, S. Lagresle, Z. Hannas, E. Calvosa, L. Duponchel, Mammalian cell culture monitoring using in situ spectroscopy: Is your method really optimised?, Biotechnol. Progr. 33 (2017) 308-316. https://doi.org/10.1002/btpr.2430. [15] H. Schwarz, M.E. Makinen, A. Castan, V. Chotteau, Monitoring of amino acids and antibody N-glycosylation in high cell density perfusion culture based on Raman spectroscopy, Biochem. Eng. J. 182 (2022) 108426. https://doi.org/10.1016/j.bej.2022.108426. [16] A. Tulsyan, H. Khodabandehlou, T. Wang, G. Schorner, M. Coufal, C. Undey, Spectroscopic models for real-time monitoring of cell culture processes using spatiotemporal just-in-time Gaussian processes, AIChE J. 67 (2021)1-17. [17] A. Tulsyan, G. Schorner, H. Khodabandehlou, T. Wan, M. Coufal, C. Undey, A machine-learning approach to calibrate generic Raman models for real-time monitoring of cell culture processes, Biotechnol. Bioeng. 116 (2019) 2575-2586. https://doi.org/10.1002/bit.27100. [18] A. Tulsyan, T. Wang, G. Schorner, H. Khodabandehlou, M. Coufal, C. Undey, Automatic real-time calibration, assessment, and maintenance of generic Raman models for online monitoring of cell culture processes, Biotechnol. Bioeng. 117 (2020) 406-416. https://doi.org/10.1002/bit.27205. [19] J. Domjan, E. Pantea, M. Gyurkes, L. Madarasz, D. Kozak, A. Farkas, B. Horvath, Z. Benkő, Z.K. Nagy, G. Marosi, E. Hirsch, Real-time amino acid and glucose monitoring system for the automatic control of nutrient feeding in CHO cell culture using Raman spectroscopy, Biotechnol. J. 17 (2022) 2100395. https://doi.org/10.1002/biot.202100395. [20] T.A. Webster, B.C. Hadley, M. Dickson, J.K. Busa, C. Jaques, C. Mason, Feedback control of two supplemental feeds during fed-batch culture on a platform process using inline Raman models for glucose and phenylalanine concentration, Bioprocess. Biosyst. Eng. 44 (2021) 127-140. https://doi.org/10.1007/s00449-020-02429-y. [21] C. Rafferty, J. O’Mahony, R. Rea, B. Burgoyne, K.M. Balss, O. Lyngberg, C. O’Mahony-Hartnett, D. Hill, E. Schaefer, Raman spectroscopic based chemometric models to support a dynamic capacitance based cell culture feeding strategy, Bioprocess. Biosyst. Eng. 43 (2020) 1415-1429. https://doi.org/10.1007/s00449-020-02336-2. [22] E. Hirsch, H. Pataki, J. Domjan, A. Farkas, P. Vass, C. Feher, Z. Barta, Z.K. Nagy, G.J. Marosi, I. Csontos, Inline noninvasive Raman monitoring and feedback control of glucose concentration during ethanol fermentation, Biotechnol. Prog. 35 (2019). https://doi.org/10.1002/btpr.2848. [23] T.E. Matthews, B.N. Berry, J. Smelko, J. Moretto, B. Moore, K. Wiltberger, Closed loop control of lactate concentration in mammalian cell culture by Raman spectroscopy leads to improved cell density, viability, and biopharmaceutical protein production, Biotechnol. Bioeng. 113 (2016) 2416-2424. https://doi.org/10.1002/bit.26018. [24] J. Domjan, A. Fricska, L. Madarasz, M. Gyurkes, A. Kote, A. Farkas, P. Vass, C. Feher, B. Horvath, K. Konczol, H. Pataki, Z.K. Nagy, G.J. Marosi, E. Hirsch, Raman-based dynamic feeding strategies using real-time glucose concentration monitoring system during adalimumab producing CHO cell cultivation, Biotechnol. Progr. 36 (2020) e3052. https://doi.org/10.1002/btpr.3052. [25] T. Eyster, S. Talwar, J. Fernandez, S. Foster, J. Hayes, R. Allen, S. Reidinger, B. Wan, X. Ji, J. Aon, P. Patel, D.B. Ritz, Tuning monoclonal antibody galactosylation using Raman spectroscopy-controlled lactic acid feeding, Biotechnol. Progr. 37 (2021). https://doi.org/10.1002/btpr.3085. [26] G. Chen, J. Hu, Y. Qin, W. Zhou, Viable cell density on-line auto-control in perfusion cell culture aided by in-situ Raman spectroscopy, Biochem. Eng. J. 172 (2021) 108063. https://doi.org/10.1016/j.bej.2021.108063. [27] T. Basar, A New Approach to Linear Filtering and Prediction Problems, A New Approach to Linear Filtering and Prediction Problems, 2009. https://doi.org/10.1109/9780470544334.ch9. [28] Q. Li, R. Li, K. Ji, W. Dai, Kalman Filter and Its Application, in: 2015 8th International Conference on Intelligent Networks and Intelligent Systems (ICINIS), 2015: pp. 74-77. https://doi.org/10.1109/ICINIS.2015.35. [29] P. Teppola, S.-P. Mujunen, P. Minkkinen, Kalman filter for updating the coefficients of regression models. A case study from an activated sludge waste-water treatment plant, Chemom. Intell. Lab. Syst 45 (1999) 371-384. https://doi.org/10.1016/S0169-7439(98)00145-2. [30] Q.-P. Mei, T.-F. Li, L.-Z. Yao, D. Huang, Y.-L. Yang, Study of an adaptable calibration model of near-infrared spectra based on KF-PLS, Chemom. Intell. Lab. Syst 157 (2016) 152-161. https://doi.org/10.1016/j.chemolab.2016.07.008. [31] J. Engel, J. Gerretzen, E. Szymanska, J.J. Jansen, G. Downey, L. Blanchet, L.M.C. Buydens, Breaking with trends in pre-processing?, TrAC, Trends Anal. Chem 50 (2013) 96-106. https://doi.org/10.1016/j.trac.2013.04.015. [32] J. Gerretzen, E. Szymanska, J. Bart, A.N. Davies, H.-J. van Manen, E.R. van den Heuvel, J.J. Jansen, L.M.C. Buydens, Boosting model performance and interpretation by entangling preprocessing selection and variable selection, Analytica Chimica Acta 938 (2016) 44-52. https://doi.org/10.1016/j.aca.2016.08.022. [33] J. Gerretzen, E. Szymanska, J.J. Jansen, J. Bart, H.-J. van Manen, E.R. van den Heuvel, L.M.C. Buydens, Simple and Effective Way for Data Preprocessing Selection Based on Design of Experiments, Anal. Chem. 87 (2015) 12096-12103. https://doi.org/10.1021/acs.analchem.5b02832. [34] N.K. Afseth, V.H. Segtnan, J.P. Wold, Raman spectra of biological samples: A study of preprocessing methods, Appl. Spectrosc. 60 (2006) 1358-1367. https://doi.org/10.1366/000370206779321454. [35] S. Andre, S. Lagresle, A. Da Sliva, P. Heimendinger, Z. Hannas, E. Calvosa, L. Duponchel, Developing global regression models for metabolite concentration prediction regardless of cell line: Developing Global Regression Models, Biotechnol. Bioeng. 114 (2017) 2550-2559. https://doi.org/10.1002/bit.26368. [36] C. Rafferty, K. Johnson, J. O’Mahony, B. Burgoyne, R. Rea, K.M. Balss, Analysis of chemometric models applied to Raman spectroscopy for monitoring key metabolites of cell culture, Biotechnol. Progr. 36 (2020) e2977. https://doi.org/10.1002/btpr.2977. [37] M. Koch, C. Suhr, B. Roth, M. Meinhardt-Wollweber, Iterative morphological and mollifier-based baseline correction for Raman spectra, J. Raman Spectrosc. 48 (2017) 336-342. https://doi.org/10.1002/jrs.5010. [38] H.-D. Li, Q.-S. Xu, Y.-Z. Liang, libPLS: An integrated library for partial least squares regression and linear discriminant analysis, Chemometrics Intell. Lab. Syst. 176 (2018) 34-43. https://doi.org/10.1016/j.chemolab.2018.03.003. [39] B.N. Berry, T.M. Dobrowsky, R.C. Timson, R. Kshirsagar, T. Ryll, K. Wiltberger, Quick generation of Raman spectroscopy based in-process glucose control to influence biopharmaceutical protein product quality during mammalian cell culture, Biotechnol. Prog. 32 (2016) 224-234. https://doi.org/10.1002/btpr.2205. |
[1] | Qingping Qu, Daoyan Liu, Hao Lyu, Jinsheng Sun. Process synthesis for the separation of coal-to-ethanol products [J]. Chinese Journal of Chemical Engineering, 2024, 69(5): 263-278. |
[2] | Jian Long, Kai Deng, Renchu He. Closed-loop scheduling optimization strategy based on particle swarm optimization with niche technology and soft sensor method of attributes-applied to gasoline blending process [J]. Chinese Journal of Chemical Engineering, 2023, 61(9): 43-57. |
[3] | Xi Luo, Xiayuan Feng, Xu Ji, Yagu Dang, Li Zhou, Kexin Bi, Yiyang Dai. Extraction and analysis of risk factors from Chinese chemical accident reports [J]. Chinese Journal of Chemical Engineering, 2023, 61(9): 68-81. |
[4] | Xinhao Li, Qing Ye, Jinlong Li, Lingqiang Yan, Xue Jian, Licheng Xie, Jianyu Zhang. Investigation of energy-efficient heat pump assisted heterogeneous azeotropic distillation for separating of acetonitrile/ethyl acetate/n-hexane mixture [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 20-33. |
[5] | Hongru Zhang, Yusen Chen, Haiyang Cheng, Yangyang Wang, Peizhe Cui, Shiqing Zheng, Zhaoyou Zhu, Yinglong Wang, Yanyue Lu, Jun Gao. Comprehensive analysis on the economy and energy demand of pressure-swing distillation and pervaporation for separating waste liquid containing multiple components [J]. Chinese Journal of Chemical Engineering, 2023, 63(11): 12-20. |
[6] | Yao Wang, Qing Ye, Jinlong Li, Qingqing Rui, Azhi Yu. Economic and entropy production evaluation of extractive distillation and solvent-assisted pressure-swing distillation by multi-objective optimization [J]. Chinese Journal of Chemical Engineering, 2023, 63(11): 246-259. |
[7] | Hongyi Qu, Shengyong Mo, Ke Yao, Zhao-Xia Huang, Zhihao Xu, Furong Gao. A master–slave generalized predictive synchronization control for preheating process of multi-cavity hot runner system [J]. Chinese Journal of Chemical Engineering, 2023, 62(10): 270-280. |
[8] | Honggui Han, Meiting Sun, Huayun Han, Xiaolong Wu, Junfei Qiao. Univariate imputation method for recovering missing data in wastewater treatment process [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 201-210. |
[9] | Xinhai Zhou, Dawei Zhou, Xinhui Bao, Yang Zhang, Jie Zhou, Fengxue Xin, Wenming Zhang, Xiujuan Qian, Weiliang Dong, Min Jiang, Katrin Ochsenreither. Production of palmitoleic acid by oleaginous yeast Scheffersomyces segobiensis DSM 27193 using systematic dissolved oxygen regulation strategy [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 324-331. |
[10] | Na Wang, Chong Peng, Zhenmin Cheng, Zhiming Zhou. Molecular reconstruction of vacuum gas oils using a general molecule library through entropy maximization [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 21-29. |
[11] | Jiaxin Zhang, Wenjia Luo, Yiyang Dai, Yuman Yao. Cycle temporal algorithm-based multivariate statistical methods for fault diagnosis in chemical processes [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 54-70. |
[12] | Tong Qin, Zhenhao Xi, Ling Zhao, Weikang Yuan. Monte Carlo simulation of sequential structure control of AN-MA-IA aqueous copolymerization by different operation modes [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 231-242. |
[13] | Teng Wang, Zihong Xia, Caixia Chen. Computational study of bubble coalescence/break-up behaviors and bubble size distribution in a 3-D pressurized bubbling gas-solid fluidized bed of Geldart A particles [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 485-496. |
[14] | Yuyang Kang, Yiqing Luo, Xigang Yuan. Recent progress on equation-oriented optimization of complex chemical processes [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 162-169. |
[15] | Cemile Şeyma Arzum Yapıcı, Dilan Toprak, Müjgan Yıldız, Sinan Uyanık, Yakup Karaaslan, Deniz Uçar. A combo technology of autotrophic and heterotrophic denitrification processes for groundwater treatment [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 121-127. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||