Chin.J.Chem.Eng. ›› 2015, Vol. 23 ›› Issue (1): 162-172.doi: 10.1016/j.cjche.2014.10.006
• PROCESS SYSTEMS ENGINEERING AND PROCESS SAFETY • Previous Articles Next Articles
Lianfang Cai, Xuemin Tian
Received:
2013-04-07
Revised:
2013-06-16
Online:
2015-01-28
Published:
2015-01-24
Contact:
Xuemin Tian
E-mail:tianxm@upc.edu.cn
Supported by:
Supported by the National Natural Science Foundation of China (61273160), the Natural Science Foundation of Shandong Province (ZR2011FM014), the Fundamental Research Funds for the Central Universities (12CX06071A), and the Postgraduate Innovation Funds of China University of Petroleum (CX2013060).
Lianfang Cai, Xuemin Tian . A new process monitoring method based on noisy time structure independent component analysis[J]. Chin.J.Chem.Eng., 2015, 23(1): 162-172.
[1] S. Stubbs, J. Zhang, J.Morris, Fault detection in dynamic processes using a simplified monitoring-specific CVA state spacemodeling approach, Comput. Chem. Eng. 41 (11) (2012) 77-87.[2] L. Ye, X. Shi, J. Liang, A multi-level approach for complex fault isolation based on structured residuals, Chin. J. Chem. Eng. 19 (3) (2011) 462-472.[3] J. Yu, Localized fisher discriminant analysis based complex chemical process monitoring, AICHE J. 57 (7) (2011) 1817-1828.[4] Z.B. Zhu, Z.H. Song, A. Palazoglu, Process pattern construction and multi-mode monitoring, J. Process Control 22 (1) (2012) 247-262.[5] I.B. Khediri, M. Limam, C. Weihs, Variable window adaptive kernel principal component analysis for nonlinear nonstationary process monitoring, Comput. Ind. Eng. 61 (3) (2011) 437-446.[6] C.F. Alcala, S.J. Qin, Reconstruction-based contribution for process monitoring with kernel principal component analysis, Ind. Eng. Chem. Res. 49 (17) (2010) 7849-7857.[7] Z.F. Wang, J.Q. Yuan, Online supervision of penicillin cultivations based on rolling MPCA, Chin. J. Chem. Eng. 15 (1) (2007) 92-96.[8] X. Liu, U. Kruger, T. Littler, L. Xie, S.Wang, Moving window kernel PCA for adaptive monitoring of nonlinear process, Chemom. Intell. Lab. Syst. 96 (2) (2009) 132-143.[9] J.M. Lee, S.J. Qin, I.B. Lee, Fault detection and diagnosis of multivariate process based on modified independent component analysis, AICHE J. 52 (10) (2006) 3501-3514.[10] J. Yu, A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical process, Chem. Eng. Sci. 68 (1) (2012) 506-519.[11] Y.W. Zhang, Y. Zhang, Fault detection of non-Gaussian processes based on modified independent component analysis, Chem. Eng. Sci. 65 (16) (2010) 4630-4639.[12] L.F. Cai, X.M. Tian, N. Zhang, Process fault detection method using time-structure KICA and OCSVM, J. Tsinghua Univ. (Sci. Technol.) 52 (9) (2012) 1205-1209 (in Chinese).[13] C.C. Hsu, M.C. Chen, L.S. Chen, Intelligent ICA-SVM fault detector for non-Gaussian multivariate process monitoring, Expert Syst. Appl. 37 (4) (2010) 3264-3273.[14] M. Kano, S. Tanaka, S. Hasebe, I. Hashimoto, Monitoring independent components for fault detection, AICHE J. 49 (4) (2003) 969-976.[15] J.M. Lee, C.K. Yoo, I.B. Lee, Statistical process monitoring with independent component analysis, J. Process Control 14 (5) (2004) 467-485.[16] G. Stefatos, A.B. Hamza, Dynamic independent component analysis approach for fault detection and diagnosis, Expert Syst. Appl. 37 (12) (2010) 8606-8617.[17] P.P. Odiowei, Y. Cao, State-space independent component analysis for nonlinear dynamic process monitoring, Chemom. Intell. Lab. Syst. 103 (1) (2010) 59-65.[18] X.M. Tian, X.L. Zhang, X.G. Deng, S. Chen, Multiway kernel independent component analysis based on feature samples for batch process monitoring, Neurocomputing 72 (7) (2009) 1584-1596.[19] L.F. Cai, X.M. Tian, N. Zhang, Non-Gaussian process fault detection method based on modified KICA, CIESC J. 63 (9) (2012) 2864-2868 (in Chinese).[20] Y.W. Zhang, J.Y. An, H.L. Zhang, Monitoring of time-varying processes using kernel independent component analysis, Chem. Eng. Sci. 88 (2013) 23-32.[21] M.M. Rashid, J. Yu, Hidden Markov model based adaptive independent component analysis approach for complex chemical process monitoring and fault detection, Ind. Eng. Chem. Res. 51 (15) (2012) 5506-5514.[22] A. Hyvärinen, Fast and robust fixed-point algorithms for independent component analysis, IEEE Trans. Neural Netw. 10 (3) (1999) 626-634.[23] D.Wang, Robust data-driven modeling approach for real-time final product quality prediction in batch process operation, IEEE Trans. Ind. Inf. 7 (2) (2011) 371-377.[24] Z.Q. Ge, Z.H. Song, PICA based process monitoring method, CIESC J. 59 (7) (2008) 1665-1670 (in Chinese).[25] X.D. Zhang, Time Series Analysis—High Order StatisticsMethod, Tsinghua University Press, Beijing, 1996. 20-24 (in Chinese).[26] H.H. Yang, S.I. Amari, Adaptive on-line learning algorithms for blind separationmaximum entropy and minimum mutual information, Neural Comput. 9 (7) (1997) 1457-1482.[27] E.L. Russell, L.H. Chiang, R.D. Braatz, Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis, Chemom. Intell. Lab. Syst. 51 (1) (2000) 81-93.[28] L. Petzold, S. Li, Y. Cao, R. Serban, Sensitivity analysis of differential-algebraic equations and partial differential equations, Comput. Chem. Eng. 30 (10-12) (2006) 1553-1559.[29] W. Lu, J.C. Rajapakse, Approach and applications of constrained ICA, IEEE Trans. Neural Netw. 16 (1) (2005) 203-212.[30] X.G. Deng, X.M. Tian, Sparse kernel locality preserving projection and its application in nonlinear process fault detection, Chin. J. Chem. Eng. 21 (2) (2013) 163-170.[31] M.C. Johannesmeyer, A. Singhal, D.E. Seborg, Pattern matching in historical data, AICHE J. 48 (9) (2002) 2022-2038.[32] S. Mahadevan, S.L. Shah, Fault detection and diagnosis in process data using oneclass support vector machines, J. Process Control 19 (10) (2009) 1627-1639.[33] J.C. Wang, Y.B. Zhang, H. Cao, W.Z. Zhu, Dimension reduction method of independent component analysis for process monitoring based on minimum mean square error, J. Process Control 22 (2) (2012) 477-487. |
[1] | Muhammad Nawaz, Abdulhalim Shah Maulud, Haslinda Zabiri, Syed Ali Ammar Taqvi, Alamin Idris. Improved process monitoring using the CUSUM and EWMA-based multiscale PCA fault detection framework [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 253-265. |
[2] | Shutian Chen, Qingchao Jiang, Xuefeng Yan. Multimodal process monitoring based on transition-constrained Gaussian mixture model [J]. Chinese Journal of Chemical Engineering, 2020, 28(12): 3070-3078. |
[3] | Lixia Kang, Yongzhong Liu. Synthesis of flexible heat exchanger networks: A review [J]. Chinese Journal of Chemical Engineering, 2019, 27(7): 1485-1497. |
[4] | Lijing Zang, Kejin Huang, Ting Guo, Yang Yuan, Haisheng Chen, Liang Zhang, Xing Qian, Shaofeng Wang. Temperature inferential control of a reactive distillation column with double reactive sections [J]. Chinese Journal of Chemical Engineering, 2019, 27(4): 896-904. |
[5] | Abbas Hemmati, Hamed Rashidi. Mass transfer investigation and operational sensitivity analysis of aminebased industrial CO2 capture plant [J]. Chin.J.Chem.Eng., 2019, 27(3): 534-543. |
[6] | Qi Chen, Jintao Sun, Xiaojun Zhang. Kinetic contribution of CO2/O2 additive in methane conversion activated by non-equilibrium plasmas [J]. Chin.J.Chem.Eng., 2018, 26(5): 1041-1050. |
[7] | Guozhu Wang, Jianchang Liu, Yuan Li, Cheng Zhang. Fault diagnosis of chemical processes based on partitioning PCA and variable reasoning strategy [J]. , 2016, 24(7): 869-880. |
[8] | Zhengshun Fei, Kangling Liu. Online process monitoring for complex systems with dynamic weighted principal component analysis [J]. Chin.J.Chem.Eng., 2016, 24(6): 775-786. |
[9] | Weiwei Wang, Xiao Liang, Mingzhu Zhang. Measurment of gas-liquid two-phase slug flow with a Venturi meter based on blind source separation [J]. , 2015, 23(9): 1447-1452. |
[10] | Yawei Yang, Yuxin Ma, Bing Song, Hongbo Shi. An aligned mixture probabilistic principal component analysis for fault detection of multimode chemical processes [J]. Chin.J.Chem.Eng., 2015, 23(8): 1357-1363. |
[11] | Shijin Ren, Zhihuan Song, Maoyun Yang, Jianguo Ren . A novel multimode processmonitoring method integrating LCGMMwith modified LFDA [J]. Chin.J.Chem.Eng., 2015, 23(12): 1970-1980. |
[12] | Lianfang Cai, Xuemin Tian, Ni Zhang. A Kernel Time Structure Independent Component Analysis Method for Nonlinear Process Monitoring [J]. , 2014, 22(11/12): 1243-1253. |
[13] | JIANG Qingchao, YAN Xuefeng . Statistical Monitoring of Chemical Processes Based on Sensitive Kernel Principal Components [J]. Chin.J.Chem.Eng., 2013, 21(6): 633-643. |
[14] | GUO Hui, LI Hongguang. On-line Batch Process Monitoring with Improved Multi-way Independent Component Analysis [J]. Chin.J.Chem.Eng., 2013, 21(3): 263-270. |
[15] | WANG Hong, XIE Lei, SONG Zhihuan. A Review for Model Plant Mismatch Measures in Process Monitoring* [J]. Chin.J.Chem.Eng., 2012, 20(6): 1039-1046. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||