Chin.J.Chem.Eng. ›› 2018, Vol. 26 ›› Issue (4): 747-752.doi: 10.1016/j.cjche.2017.11.001
• Catalysis, Kinetics and Reaction Engineering • Previous Articles Next Articles
Zhenhua Li, Mengyao Si, Li Xin, Renjie Liu, Runxue Liu, Jing Lü
Received:
2017-08-13
Revised:
2017-11-10
Online:
2018-04-28
Published:
2018-05-19
Supported by:
Supported by the National Natural Science Foundation of China (21506154) and the Program of Introducing Talents of Discipline to Universities (B06006).
Zhenhua Li, Mengyao Si, Li Xin, Renjie Liu, Runxue Liu, Jing Lü. Cobalt catalysts for Fischer-Tropsch synthesis: The effect of support, precipitant and pH value[J]. Chin.J.Chem.Eng., 2018, 26(4): 747-752.
[1] Y. Chen, C.C. Liu, Y.H. Zhang, Y.X. Zhao, L. Wei, X. Wen, X. Zhao, J.L. Li, The influence of Fe, Ti, Ga and Zn on the Fischer-Tropsch synthesis catalytic performance of Cobased hierarchically porous ZSM-5 zeolite catalysts, Catal. Lett. 147(2) (2017) 502-508.[2] J. Aluha, Y.F. Hu, N. Abatzoglou, Effect of CO concentration on the α-value of plasmasynthesized Co/C catalyst in Fischer-Tropsch synthesis, Catalysts 7(3) (2017) 502-508.[3] V.R.R. Pendyala, W.D. Shafer, G. Jacobs, M. Martinelli, D.E. Sparks, B.H. Davis, Fischer-Tropsch synthesis:effect of ammonia on product selectivities for a Pt promoted Co/alumina catalyst, RSC Adv. 7(13) (2017) 7793-7800.[4] A.P. Savost'yanov, R.E. Yakovenko, S.I. Sulima, V.G. Bakun, G.B. Narochnyi, V.M. Chernyshev, S.A. Mitchenko, The impact of Al2O3 promoter on an efficiency of C5+ hydrocarbons formation over Co/SiO2 catalysts via Fischer-Tropsch synthesis, Catal. Today 279(2017) 107-114.[5] W. Chu, J.Q. Xu, J.P. Hong, T. Lin, A. Khodakov, Design of efficient Fischer Tropsch cobalt catalysts via plasma enhancement:reducibility and performance (review), Catal. Today 256(2015) 41-48.[6] S.A. Chernyak, G.E. Selyaev, E.V. Suslova, A.V. Egorov, K.I. Maslakov, A.N. Kharlanov, S.V. Savilov, V.V. Lunin, Effect of cobalt weight content on the structure and catalytic properties of Co/CNT catalysts in the Fischer-Tropsch synthesis, Kinet. Catal. 57(5) (2016) 640-646.[7] L.V. Sineva, E.V. Kulchakovskaya, E.Y. Asalieva, V.Z. Mordkovich, Effect of water on the secondary transformations of hydrocarbons in the Fischer-Tropsch synthesis on Co-zeolite catalysts, Mendeleev Commun. 27(1) (2017) 75-77.[8] T.J. Fu, Y.H. Jiang, J. Lv, Z.H. Li, Effect of carbon support on Fischer-Tropsch synthesis activity and product distribution over Co-based catalysts, Fuel Process. Technol. 110(2013) 141-149.[9] X.H. Zhang, H.Q. Su, Y.L. Zhang, X.J. Gu, Effect of CeO2 promotion on the catalytic performance of Co/ZrO2 catalysts for Fischer-Tropsch synthesis, Fuel 184(2016) 162-168.[10] J.G. Chen, Y.H. Sun, The structure and reactivity of coprecipitated CO-ZrO2 catalysts for Fischer-Tropsch synthesis, Stud. Surf. Sci. Catal. 147(2004) 277-282.[11] L.T. Jia, K.G. Fang, J.G. Chen, Y.H. Sun, Effects of reduction atmosphere on structure and catalytic activity of Co-ZrO2 catalyst for Fischer-Tropsch synthesis, Chin. J. Catal. 28(7) (2007) 596-600.[12] A.T. Najafabadi, A.A. Khodadadi, M.J. Parnian, Y. Mortazavi, Atomic layer deposited Co/γ-Al2O3 catalyst with enhanced cobalt dispersion and Fischer-Tropsch synthesis activity and selectivity, Appl. Catal. A 511(2016) 31-46.[13] J. Liu, J. Yu, F.B. Su, G.W. Xu, Intercorrelation of structure and performance of Ni-Mg/Al2O3 catalysts prepared with different methods for syngas methanation, Catal. Sci. Technol. 4(2) (2014) 472-481.[14] T.J. Fu, J. Lv, Z.H. Li, Effect of carbon porosity and cobalt particle size on the catalytic performance of carbon supported cobalt Fischer-Tropsch catalysts, Ind. Eng. Chem. Res. 53(4) (2014) 1342-1350.[15] X.Q. Wang, W.S. Ning, L.H. Hu, Y.L. Li, Influences of Al2O3 on the structure and reactive performance of Co/ZnO catalyst, Catal. Commun. 24(2012) 61-64.[16] Z.D. Pan, M. Parvari, D.B. Bukur, Fischer-Tropsch synthesis on Co/Al2O3 catalyst:effect of pretreatment procedure, Top. Catal. 57(6-9) (2014) 470-478.[17] Z. Li, J.H. Wu, J.Q. Yu, D.Z. Han, L.Y. Wu, J.Q. Li, Effect of incorporation manner of Zr on the Co/SBA-15 catalyst for the Fischer-Tropsch synthesis, J. Mol. Catal. A Chem. 424(2016) 384-392.[18] K.C. Zhao, W.H. Wang, Z.H. Li, Highly efficient Ni/ZrO2 catalysts prepared via combustion method for CO2 methanation, J. CO2 Util. 16(2016) 236-244.[19] Y.C. Liu, H.T. Wu, L.T. Jia, Z.H. Fu, J.G. Chen, D.B. Li, D.L. Yin, Y.H. Sun, Effect of the calcination temperature on the catalyst performance of ZrO2-supported cobalt for Fischer-Tropsch synthesis, Adv. Mater. Res. 347-353(2011) 3788-3793.[20] T.J. Fu, R.J. Liu, J. Lv, Z.H. Li, Influence of acid treatment on N-doped multi-walled carbon nanotube supports for Fischer-Tropsch performance on cobalt catalyst, Fuel Process. Technol. 122(2014) 49-57.[21] M.N. Lu, N. Fatah, A.Y. Khodakov, Solvent-free synthesis of alumina supported cobalt catalysts for Fischer-Tropsch synthesis, J. Energy Chem. 25(6) (2016) 1001-1007.[22] Y.C. Liu, K.G. Fang, J.G. Chen, Y.H. Sun, Effect of pore size on the performance of mesoporous zirconia-supported cobalt Fischer-Tropsch catalysts, Green Chem. 9(6) (2007) 611-615.[23] Q. Liu, J.J. Gao, F.N. Gu, X.P. Lu, Y.J. Liu, H.F. Li, Z.Y. Zhong, B. Liu, G.W. Xu, F.B. Su, One-pot synthesis of ordered mesoporous Ni-V-Al catalysts for CO methanation, J. Catal. 326(2015) 127-138.[24] L.T. Jia, D.B. Li, B. Hou, Z.Q. Sun, B. Liu, J.G. Guo, R.H. Ren, Y.H. Sun, Influence of reductionoxidation-reduction treatment on the structure and catalytic performance of Co-ZrO2 for Fischer-Tropsch synthesis, J. Fuel Chem. Technol. 38(6) (2010) 710-715.[25] P. Dumrongbunditkul, T. Witoon, M. Chareonpanich, T. Mungcharoen, Preparation and characterization of Co-Cu-ZrO2 nanomaterials and their catalytic activity in CO2 methanation, Ceram. Int. 42(8) (2016) 10444-10451. |
[1] | Mohammad Reza Nabid, Yasamin Bide, Mahsa Jafari. One-step synthesis of Ni@Pd/NH2-Fe3O4 nanoparticles as affordable catalyst for formic acid dehydrogenation [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 168-174. |
[2] | Yanyong Li, Meng Ge, Jiameng Wang, Mengquan Guo, Fanji Liu, Mingxun Han, Yanhong Xu, Lihong Zhang. Dehydrogenation of isobutane to isobutene over a Pt-Cu bimetallic catalyst in the presence of LaAlO3 perovskite [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 203-211. |
[3] | Lei Miao, Jing Yan, Weiyan Wang, Yanping Huang, Wensong Li, Yunquan Yang. Dehydrogenation of methylcyclohexane over Pt supported on Mg-Al mixed oxides catalyst: The effect of promoter Ir [J]. Chinese Journal of Chemical Engineering, 2020, 28(9): 2337-2342. |
[4] | Junqi Tian, Yanqin Li, Xia Zhou, Yongbin Yao, Denghao Wang, Jianming Dan, Bin Dai, Qiang Wang, Feng Yu. Overwhelming low ammonia escape and low temperature denitration efficiency via MnOx-decorated two-dimensional MgAl layered double oxides [J]. Chinese Journal of Chemical Engineering, 2020, 28(7): 1925-1934. |
[5] | Zhiheng Ren, Muhammad Naeem Younis, Hui Zhao, Chunshan Li, Xiangui Yang, Erqiang Wang, Gongying Wang. Silver modified Cu/SiO2 catalyst for the hydrogenation of methyl acetate to ethanol [J]. Chinese Journal of Chemical Engineering, 2020, 28(6): 1612-1622. |
[6] | Zhongfeng Geng, Hao Deng, Yonghui Li, Minhua Zhang. Numerical investigation of complex chemistry performing in Ptcatalyzed oxidative dehydrogenation of ethane fixed-bed reactors [J]. Chinese Journal of Chemical Engineering, 2020, 28(3): 793-807. |
[7] | Yuxi Zhou, Yang Wang, Wenduo Lu, Bing Yan, Anhui Lu. A high propylene productivity over B2O3/SiO2@honeycomb cordierite catalyst for oxidative dehydrogenation of propane [J]. Chinese Journal of Chemical Engineering, 2020, 28(11): 2778-2784. |
[8] | Chunhua Zhang, Guangxin Yang, Hong Jiang, Yefei Liu, Rizhi Chen, Weihong Xing. Phenol hydrogenation to cyclohexanone over palladium nanoparticles loaded on charming activated carbon adjusted by facile heat treatment [J]. Chinese Journal of Chemical Engineering, 2020, 28(10): 2600-2606. |
[9] | Weiquan Cai, Junlin Zhuo, Jimin Fang, Zhichao Yang. 2-Ethyl-9,10-anthraquinone assisted sol-gel synthesis of Pd/γ-Al2O3 nanorods with enhanced catalytic performance in 2-ethyl-9,10-anthraquinone hydrogenation [J]. Chinese Journal of Chemical Engineering, 2019, 27(8): 1863-1869. |
[10] | Zuojun Wei, Xinmiao Zhu, Xiaoshuang Liu, Haiqin Xu, Xinghua Li, Yaxin Hou, Yingxin Liu. Pt-Re/rGO bimetallic catalyst for highly selective hydrogenation of cinnamaldehyde to cinnamylalcohol [J]. Chin.J.Chem.Eng., 2019, 27(2): 369-378. |
[11] | Shi Yin, Lingjun Zhu, Xiaoliu Wang, Yingying Liu, Shurong Wang. The influence mechanism of solvent on the hydrogenation of dimethyl oxalate [J]. Chin.J.Chem.Eng., 2019, 27(2): 386-390. |
[12] | Haitao Li, Yin Zhang, Hongxi Zhang, Xiaoqin Qin, Yalin Xu, Ruifang Wu, Zheng Jiang, Yongxiang Zhao. The nature of the deactivation of hydrothermally stable Ni/SiO2-Al2O3 catalyst in long-time aqueous phase hydrogenation of crude 1,4-butanediol [J]. Chinese Journal of Chemical Engineering, 2019, 27(12): 2960-2967. |
[13] | Mengjuan Zhang, Panpan Li, Mingyuan Zhu, Zhiqun Tian, Jianming Dan, Jiangbing Li, Bin Dai, Feng Yu. Ultralow-weight loading Ni catalyst supported on two-dimensional vermiculite for carbon monoxide methanation [J]. Chin.J.Chem.Eng., 2018, 26(9): 1873-1878. |
[14] | Dong-Ho Lee, Jiin You, Je-Min Woo, Jung Yoon Seo, Young Cheol Park, Jong-Seop Lee, Hyunuk Kim, Jong-Ho Moon, Seung Bin Park. Influence of dehydrating agents on the oxidative carbonylation of methanol for dimethyl carbonate synthesis over a Cu/Y-zeolite catalyst [J]. Chin.J.Chem.Eng., 2018, 26(5): 1059-1063. |
[15] | Chufu Li. Modeling and optimization of industrial Fischer-Tropsch synthesis with the slurry bubble column reactor and iron-based catalyst [J]. Chin.J.Chem.Eng., 2018, 26(5): 1102-1109. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||