Chinese Journal of Chemical Engineering ›› 2020, Vol. 28 ›› Issue (11): 2771-2777.doi: 10.1016/j.cjche.2020.07.023
• Catalysis, Kinetics and Reaction Engineering • Previous Articles Next Articles
Jinpeng Zhang1, Hongfeng Gao1, Nini Yuan1, Qiang Wang1, Yuhua Wu1, Yanli Sun2, Hongcun Bai1
Received:
2020-04-07
Revised:
2020-06-13
Online:
2020-11-28
Published:
2020-12-31
Contact:
Hongcun Bai
E-mail:hongcunbai@nxu.edu.cn
Supported by:
Jinpeng Zhang, Hongfeng Gao, Nini Yuan, Qiang Wang, Yuhua Wu, Yanli Sun, Hongcun Bai. Insights into the intrinsic interaction between series of C1 molecules and surface of NiO oxygen carriers involved in chemical looping processes[J]. Chinese Journal of Chemical Engineering, 2020, 28(11): 2771-2777.
[1] X. Zhu, F. Donat, Q. Imtiaz, C.R. Müller, F. Li, Chemical looping beyond combustion-A perspective, Energy Environ. Sci. (3) (2020) 772-804. [2] J. Adánez, A. Abad, Chemical-looping combustion:status and research needs, Proc. Combust. Inst. 37(4) (2019) 4303-4317. [3] L. Zeng, Z. Cheng, J.A. Fan, L.S. Fan, J. Gong, Metal oxide redox chemistry for chemical looping processes, Nat. Rev. Chem. 2(11) (2018) 349-364. [4] J. Adánez, A. Abad, T. Mendiara, P. Gayán, L.F. De Diego, F. García-Labiano, Chemical looping combustion of solid fuels, Prog. Energy Combust. Sci. 65(2018) 6-66. [5] J. Fan, H. Hong, L. Zhu, Z. Wang, H. Jin, Thermodynamic evaluation of chemical looping combustion for combined cooling heating and power production driven by coal, Energy Convers. Manag. 135(2017) 200-211. [6] B. Wang, H. Li, N. Ding, Q. Shen, H. Zhao, C. Zheng, Chemical looping combustion characteristics of coal with Fe2O3 oxygen carrier, J. Therm. Anal. Calorim. 132(1) (2018) 17-27. [7] L. Yang, Q. Guo, X. Wu, C. Tan, Y. Liu, C. Song, F. Liu, Effects of Bi2O3 on the reactivity of iron-based oxygen carriers in chemical looping combustion, Energy Fuel 33(4) (2019) 3594-3601. [8] T. Song, L. Shen, Review of reactor for chemical looping combustion of solid fuels, Int. J. Greenhouse Gas Control 76(2018) 92-110. [9] H. Ge, W. Guo, L. Shen, T. Song, J. Xiao, Experimental investigation on biomass gasification using chemical looping in a batch reactor and a continuous dual reactor, Chem. Eng. J. 286(2016) 689-700. [10] J. Adanez, A. Abad, F. Garcia-Labiano, P. Gayan, L.F. de Diego, Progress in chemicallooping combustion and reforming technologies, Prog. Energy Combust. Sci. 38(2) (2012) 215-282. [11] M. Tang, L. Xu, M. Fan, Progress in oxygen carrier development of methane-based chemical-looping reforming:A review, Appl. Energy 151(2015) 143-156. [12] C. Mesters, A selection of recent advances in C1 chemistry, Ann. Rev. Chem. Biomol. Eng. 7(2016) 223-238. [13] W. Zhou, K. Cheng, J. Kang, New horizon in C1 chemistry:breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels, Chem. Soc. Rev. 48(12) (2019) 3193-3228. [14] M. Hoelscher, A. Kaithal, W. Leitner, Manganese (I)-catalyzed β-methylation of alcohols using methanol as C1 source, Angew. Chem. Int. Ed. 59(1) (2019) 215-220. [15] Z. Huang, Y. Zhang, J. Fu, Chemical looping gasification of biomass char using iron ore as an oxygen carrier, Int. J. Hydrog. Energy 41(40) (2016) 17871-17883. [16] W. Feng, Z. Li, H. Gao, Q. Wang, H. Bai, P. Li, Understanding the molecular structure of HSW coal at atomic level:A comprehensive characterization from combined experimental and computational study, Green Energy Environ. (2020)https://doi.org/10.1016/j.gee.2020.03.013. [17] M. Gao, X. Li, L. Guo, Pyrolysis simulations of Fugu coal by large-scale ReaxFF molecular dynamics, Fuel Process. Technol. 178(2018) 197-205. [18] L. Guo, H. Zhao, W. Yang, C. Zheng, Biomass direct chemical looping with oxygen uncoupling using Cu-based oxygen carrier, J. Combust. Sci. Technol. 20(6) (2014) 523-528. [19] J.K. Nørskov, F. Abild-Pedersen, F. Studt, T. Bligaard, Density functional theory in surface chemistry and catalysis, Proc. Natl. Acad. Sci. 108(3) (2011) 937-943. [20] Ken-ichi Tanaka, Surface nano-structuring by adsorption and chemical reactions, Materials 3(9) (2010) 4518-4549. [21] M. Boudart, G. Djéga-Mariadassou, Kinetics of Heterogeneous Catalytic Reactions, Princeton University Press, USA, 2014. [22] H. Yoshida, Y. Kuwauchi, J.R. Jinschek, K. Sun, S. Tanaka, M. Kohyama, S. Takeda, Visualizing gas molecules interacting with supported nanoparticulate catalysts at reaction conditions, Science 335(2012) 317-319. [23] R. Valero, J.R. Gomes, D.G. Truhlar, F. Illas, Density functional study of CO and NO adsorption on Ni-doped MgO (100), J. Chem. Phys. 132(10) (2010), 104701. [24] S. Jiang, Y. Lu, S. Wang, Y. Zhao, X. Ma, Insight into the reaction mechanism of CO2 activation for CH4 reforming over NiO-MgO:A combination of DRIFTS and DFT study, Appl. Surf. Sci. 416(2017) 59-68. [25] G. Peng, L.R. Merte, J. Knudsen, R.T. Vang, E. Lægsgaard, F. Besenbacher, M. Mavrikakis, On the mechanism of low-temperature CO oxidation on Ni (111) and NiO (111) surfaces, J. Phys. Chem. C 114(49) (2010) 21579-21584. [26] Y. Feng, N. Wang, X. Guo, Influence mechanism of supports on the reactivity of Nibased oxygen carriers for chemical looping reforming:A DFT study, Fuel 229(2018) 88-94. [27] X. Cai, X. Wang, X. Guo, C.G. Zheng, Mechanism study of reaction between CO and NiO (00 1) surface during chemical-looping combustion:role of oxygen, Chem. Eng. J. 244(2014) 464-472. [28] F. Liu, J. Liu, Y. Yang, X. Wang, A mechanistic study of CO oxidation over spinel MnFe2O4 surface during chemical-looping combustion, Fuel 230(2018) 410-417. [29] Y. Feng, X. Guo, Study of reaction mechanism of methane conversion over Ni-based oxygen carrier in chemical looping reforming, Fuel 210(2017) 866-872. [30] H. Bai, Y. Zhu, W. Qiao, Y. Huang, Structures, stabilities and electronic properties of graphdiyne nanoribbons, RSC Adv. 1(5) (2011) 768-775. [31] Y. Zhu, H. Bai, Y. Huang, Electronic property and charge carrier mobility of extended nanowires built from narrow graphene nanoribbon and atomic carbon chain, Synth. Met. 204(2015) 57-64. [32] H. Bai, W. Qiao, Y. Zhu, Y. Huang, Crystal orbital study on the combined carbon nanowires constructed from linear carbon chains encapsulated in zigzag doublewalled carbon nanotubes, Curr. Appl. Phys. 15(3) (2015) 342-351. [33] R.A. Evarestov, Quantum Chemistry Of Solids:the LCAO First Principles Treatment Of Crystals, Springer Science & Business Media Press, Germany, 2007. [34] E.J. Baerends, ADF2016, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, the Netherlands, 2016. [35] N.S. Antonova, J.J. Carbó, J.M. Poblet, Quantifying the donor-acceptor properties of phosphine and N-heterocyclic carbene ligands in Grubbs' catalysts using a modified EDA procedure based on orbital deletion, Organometallics 28(15) (2009) 4283-4287. [36] H. Gao, W. Feng, X. Li, H. Bai, W. Qiao, Insights into the non-covalent interaction between modified nucleobases and graphene nanoflake from first-principles, Phys. E. 107(2019) 73-79. [37] H. Bai, H. Gao, W. Feng, Y. Zhao, Y. Wu, Interaction in Li@fullerenes and Li+@fullerenes:first principle insights to Li-based endohedral fullerenes, Nanomaterials 9(4) (2019) 630. [38] C. Lefebvre, G. Rubez, H. Khartabil, J.C. Boisson, C.G. Julia, H. Eric, Accurately extracting the signature of intermolecular interactions present in the nci plot of the reduced density gradient versus electron density, Phys. Chem. Chem. Phys. 19(2017) 17928-17936. [39] T. Lu, F. Chen, Multiwfn:a multifunctional wavefunction analyzer, J. Comput. Chem. 33(5) (2012) 580-592. [40] E.R. Johnson, S. Keinan, P. Mori-Sánchez, W. Yang, Revealing noncovalent interactions, J. Am. Chem. Soc. 132(18) (2010) 6498-6506. [41] Y. Li, H. Bai, L. Li, Y. Huang, Stabilities and electronic properties of nanowires made of single atomic sulfur chains encapsulated in zigzag carbon nanotubes, Nanotechnology 29(2018), 415703. [42] T.F.G.G. Cova, B.F. Milne, S.C.C. Nunes, A.A.C.C. Pais, Drastic stabilization of junction nodes in supramolecular structures based on host-guest complexes, Macromolecules 51(2018) 2732-2741. [43] X. An, Y. Kang, G. Li, The interaction between chitosan and tannic acid calculated based on the density functional theory, Chem. Phys. 520(2019) 100-107. [44] M.V. Hopffgarten, G. Frenking, Energy decomposition analysis, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2(1) (2012) 43-62. [45] J.M. Andrić, M.Z. Misini-Ignjatović, J.S. Murray, P. Politzer, S.D. Zarić, Hydrogen bonding between metal-ion complexes and noncoordinated water:electrostatic potentials and interaction energies, ChemPhysChem 17(13) (2016) 2035-2042. |
[1] | Yangjun Wei, Leming Cheng, Erdong Wu, Liyao Li. Experimental research on steady-state operation characteristics of gas-solid flow in a 15.5 m dual circulating fluidized bed system [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 70-76. |
[2] | Ling Meng, Xia Gui, Zhi Yun. Static and dynamic studies of adsorption by four macroporous resins to enrich oridonin from Rabdosia rubescens [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 151-158. |
[3] | Zoya Zaheer, Ekram Yousif Danish, Samia A. Kosa. 2-Hydroxy-1, 4-napthoquinone solubilization, thermodynamics and adsorption kinetics with surfactant [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 212-223. |
[4] | Ali H. Jawad, Ahmed Saud Abdulhameed, Lee D. Wilson, Syed Shatir A. Syed-Hassan, Zeid A. ALOthman, Mohammad Rizwan Khan. High surface area and mesoporous activated carbon from KOH-activated dragon fruit peels for methylene blue dye adsorption: Optimization and mechanism study [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 281-290. |
[5] | Mohammad Saood Manzar, Shamsuddeen A. Haladu, Mukarram Zubair, Nuhu Dalhat Mu'azu, Aleem Qureshi, Nawaf I. Blaisi, Thomas F. Garrison, Othman Charles S. Al Hamouz. Synthesis and characterization of a series of cross-linked polyamines for removal of Erichrome Black T from aqueous solution [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 341-352. |
[6] | Trung Thanh Nguyen, Vu Anh Khoa Tran, Le Ba Tran, Phuoc Toan Phan, Minh Tan Nguyen, Long Giang Bach, Surapol Padungthon, Cong Khiem Ta, Nhat Huy Nguyen. Synthesis of cation exchange resin-supported iron and magnesium oxides/hydroxides composite for nitrate removal in water [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 378-384. |
[7] | Lei Liu, Zhenshan Li, Ye Li, Ningsheng Cai. Evaluation of oxygen uncoupling characteristics of oxygen carrier using micro-fluidized bed thermogravimetric analysis [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 408-415. |
[8] | Abdul Samad, Muhammad Imran Din, Mahmood Ahmed, Saghir Ahmad. Synthesis of zinc oxide nanoparticles reinforced clay and their applications for removal of Pb (II) ions from aqueous media [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 454-461. |
[9] | Zihao Yao, Jinyan Zhao, Chenxia Zhao, Shengwei Deng, Guilin Zhuang, Xing Zhong, Zhongzhe Wei, Yang Li, Shibin Wang, Jianguo Wang. A first-principles study of reaction mechanism over carbon decorated oxygen-deficient TiO2 supported Pd catalyst in direct synthesis of H2O2 [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 126-134. |
[10] | Shanshan Wang, Liangliang Huang, Yumeng Zhang, Licheng Li, Xiaohua Lu. A mini-review on the modeling of volatile organic compound adsorption in activated carbons: Equilibrium, dynamics, and heat effects [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 153-163. |
[11] | Xiujuan Li, Le Chen, Dandan Zhu, Song Yang, Zhong Wu, Mingyang He, Zhihui Zhang, Qun Chen. Preparation of hybridizing zeolitic imidazolate frameworks with carboxymethylcellulose for adsorption separation of n-hexane/3-methylpentane [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 103-109. |
[12] | Xianxiu Li, Yan Sun, Xiaoyan Dong. Implications from γ-globulin adsorption onto cation exchangers fabricated by sequential alginate grafting and sulfonation [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 121-125. |
[13] | Saeideh Dermanaki Farahani, Javad Zolgharnein. Multivariate optimization of high removal of lead(II) using an efficient synthesized Ni-based metal-organic framework adsorbent [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 146-153. |
[14] | Kamel Hendaoui, Malika Trabelsi-Ayadi, Fadhila Ayari. Optimization and mechanisms analysis of indigo dye removal using continuous electrocoagulation [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 242-252. |
[15] | Fei Xie, Mei An, Ping Li, Xiude Hu, Hongcun Bai, Qingjie Guo. Simulation study on the gasification process of Ningdong coal with iron-based oxygen carrier [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 326-334. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||