Chinese Journal of Chemical Engineering ›› 2020, Vol. 28 ›› Issue (11): 2857-2871.doi: 10.1016/j.cjche.2020.08.022
• Energy, Resources and Environmental Technology • Previous Articles Next Articles
Zilong Deng1, Suchen Wu1, Hao Xu2, Yongping Chen1,2
Received:
2020-03-21
Revised:
2020-07-19
Online:
2020-11-28
Published:
2020-12-31
Contact:
Yongping Chen
E-mail:ypchen@seu.edu.cn
Supported by:
Zilong Deng, Suchen Wu, Hao Xu, Yongping Chen. Melting heat transfer enhancement of a horizontal latent heat storage unit by fern-fractal fins[J]. Chinese Journal of Chemical Engineering, 2020, 28(11): 2857-2871.
[1] K. Merlin, J. Soto, D. Delaunay, L. Traonvouez, Industrial waste heat recovery using an enhanced conductivity latent heat thermal energy storage, Appl. Energy 183(2016) 491-503. [2] Y.J. Sun, S.W. Wang, F. Xiao, D.C. Gao, Peak load shifting control using different cold thermal energy storage facilities in commercial buildings:a review, Appl. Energy 71(2013) 101-114. [3] A. Sari, K. Kaygusuz, Thermal energy storage characteristics of myristic and stearic acids eutectic mixture for low temperature heating applications, Chin. J. Chem. Eng. 14(2006) 270-275. [4] C.B. Zhang, S.C. Wu, F. Yao, Evaporation regimes in an enclosed narrow space, Int. J. Heat Mass Transf. 138(2019) 1042-1053. [5] G.J. Suppes, M.J. Goff, S. Lopes, Latent heat characteristics of fatty acid derivatives pursuant phase change material applications, Chem. Eng. Sci. 58(2003) 1751-1763. [6] S.C. Wu, Y.W. Ding, C.B. Zhang, D.H. Xu, Improving the performance of a thermoelectric power system using a flat-plate heat pipe, Chin. J. Chem. Eng. 27(2019) 44-53. [7] K. Hu, L. Chen, Q. Chen, X.H. Wang, J. Qi, Y. Min, Phase-change heat storage installation in combined heat and power plants for integration of renewable energy sources into power system, Energy 124(2017) 640-651. [8] Z.L. Liu, X. Sun, C.F. Ma, Experimental study of the characteristics of solidification of stearic acid in an annulus and its thermal conductivity enhancement, Energy Convers. Manag. 46(6) (2005) 971-984. [9] D.Y. Gao, Z.Q. Chen, M.H. Shi, Z.S. Wu, Study on the melting process of phase change materials in metal foams using lattice Boltzmann method, Sci. China. Technol. Sc. 53(2010) 3079-3087. [10] J. Fukai, Y. Hamada, Y. Morozumi, O. Miyataka, Improvement of thermal characteristics of latent heat thermal energy storage units using carbon-fiber brushes:experiments and modeling, Int. J. Heat Mass Transf. 46(23) (2003) 4513-4525. [11] A.H. Mosaffa, C.A.I. Ferreira, F. Talati, M.A. Rosen, Thermal performance of a multiple PCM thermal storage unit for free cooling, Energy Convers. Manag. 67(2013) 1-7. [12] T. Zhang, M.M. Chen, Y. Zhang, Y. Wang, Microencapsulation of stearic acid with polymethylmethacrylate using iron (Ⅲ) chloride as photo-initiator for thermal energy storage, Chin. J. Chem. Eng. 25(2017) 1524-1532. [13] M.K. Rathod, J. Banerjee, Thermal performance enhancement of shell and tube latent heat storage unit using longitudinal fins, Appl. Therm. Eng. 75(2015) 1084-1092. [14] X.H. Yang, Z. Lu, Q.S. Bai, Q.L. Zhang, L.W. Jin, J.Y. Yan, Thermal performance of a shell-and-tube latent heat thermal energy storage unit:role of annular fins, Appl. Energy 202(2017) 558-570. [15] Z.H. Rao, Q.C. Wang, C.L. Huang, Investigation of the thermal performance of phase change material/mini-channel coupled battery thermal management system, Appl. Energy 164(2016) 659-669. [16] J.M. Mahdi, E.C. Nsofor, Melting enhancement in triplex-tube latent thermal energy storage system using nanoparticles-fins combination, Int. J. Heat Mass Transf. 109(2017) 417-427. [17] Y. Tao, Y. He, Effects of natural convection on latent heat storage performance of salt in a horizontal concentric tube, Appl. Energy 143(2015) 38-46. [18] H. Eslamnezhad, A.B. Rahimi, Enhance heat transfer for phase-change materials in triplex tube heat exchanger with selected arrangements of fins, Appl. Therm. Eng. 113(2017) 813-821. [19] M. Turkyilmazoglu, Efficiency of heat and mass transfer in fully wet porous fins:exponential fins versus straight fins, Int. J. Refrig. 46(2014) 158-164. [20] M. Turkyilmazoglu, Stretching/shrinking longitudinal fins of rectangular profile and heat transfer, Energy Convers. Manag. 91(2015) 199-203. [21] M. Turkyilmazoglu, Heat transfer from moving exponential fins exposed to heat generation, Int. J. Heat Mass Transf. 116(2018) 346-351. [22] W. Gao, M.F. Liu, S.F. Chen, C.B. Zhang, Y.J. Zhao, Droplet microfluidics with gravitydriven overflow system, Chem. Eng. J. 362(2019) 169-175. [23] A. Sciacovelli, F. Gagliardi, V. Verda, Maximization of performance of a PCM latent heat storage system with innovative fins, Appl. Energy 137(2015) 707-715. [24] M. Sheikholeslami, S. Loharsbi, D.D. Ganji, Numerical analysis of discharging process acceleration in LHTESS by immersing innovative fin configuration using finite element method, Appl. Therm. Eng. 107(2016) 154-166. [25] K. Hosseinzadeh, M. Alizadeh, D.D. Ganji, Solidification process of hybrid nanoenhanced phase change material in a LHTESS with tree-like branching fin in the presence of thermal radiation, J. Mol. Liq. 275(2019) 909-925. [26] C.B. Zhang, J. Li, Y.P. Chen, Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins, Appl. Energy 259(2019) 114102. [27] K.A. Mcculloh, J.S. Sperry, F.R. Adler, Water transport in plants obeys Murray's law, Nature 421(2003) 939-942. [28] Y. Zhou, G.S. Kassab, S. Molloi, On the design of the coronary arterial tree:a generalization of Murray's law, Phys. Med. Biol. 44(12) (1999) 2929-2945. [29] P. Xu, A.P. Sasmito, B. Yu, A.S. Mujumdar, Transport phenomena and properties in treelike networks, Appl. Mech. Rev. 68(2016) 1-9. [30] X.F. Zheng, G.F. Shen, C. Wang, Y. Li, D. Dunphy, T. Hasan, C.J. Brinker, B.L. Su, Bioinspired Murray materials for mass transfer and activity, Nat. Commun. 8(2017) 1-9. [31] A. Arshad, H.M. Ali, M. Ali, S. Manzoor, Thermal performance of phase change material (PCM) based pin-finned heat sinks for electronics devices:effect of pin thickness and PCM volume fraction, Appl. Therm. Eng. 112(2017) 143-155. [32] K.A.R. Ismail, C.L.F. Alves, M.S. Modesto, Numerical and experimental study on the solidification of PCM around a vertical axially finned isothermal cylinder, Appl. Therm. Eng. 21(1) (2001) 53-77. [33] A.A. Al-Abidi, S. Mat, K. Sopian, M.Y. Sulaiman, A.T. Mohammad, Numerical study of PCM solidification in a triplex tube heat exchanger with internal and external fins, Appl. Therm. Eng. 61(2013) 684-695. [34] B. Zalba, J.M. Marin, L.F. Caberza, H. Mehling, Review on thermal energy storage with phase change:materials, heat transfer analysis and applications, Appl. Therm. Eng. 35(2003) 251-283. [35] V.R. Voller, C. Prakash, A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems, Int. J. Heat Mass Transf. 30(8) (1987) 1709-1719. [36] B. Kamkari, H. Shokouhmand, Experimental investigation of phase change material melting in rectangular enclosures with horizontal partial fins, Int. J. Heat Mass Transf. 78(2014) 839-851. [37] S. Lohrasbi, M. Sheikholeslami, D.D. Ganji, Multi-objective RSM optimization of fin assisted latent heat thermal energy storage system based on solidification process of phase change material in presence of copper nanoparticles, Appl. Therm. Eng. 118(2017) 430-447. |
[1] | Qiang Li, Fangcao Qu. A level set based immersed boundary method for simulation of non-isothermal viscoelastic melt filling process [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 119-133. |
[2] | Xinxiao Sun, Xianglai Li, Xiaolin Shen, Jia Wang, Qipeng Yuan. Recent advances in microbial production of phenolic compounds [J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 54-61. |
[3] | Saeideh Dermanaki Farahani, Javad Zolgharnein. Multivariate optimization of high removal of lead(II) using an efficient synthesized Ni-based metal-organic framework adsorbent [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 146-153. |
[4] | Zirong Lin, Shuangfeng Wang, Shuxun Fu, Jiepeng Huo. Numerical study on effects of the cofferdam area in liquefied natural gas storage tank on the leakage and diffusion characteristics of natural gas [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 228-241. |
[5] | Kamel Hendaoui, Malika Trabelsi-Ayadi, Fadhila Ayari. Optimization and mechanisms analysis of indigo dye removal using continuous electrocoagulation [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 242-252. |
[6] | Muhammad Nawaz, Abdulhalim Shah Maulud, Haslinda Zabiri, Syed Ali Ammar Taqvi, Alamin Idris. Improved process monitoring using the CUSUM and EWMA-based multiscale PCA fault detection framework [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 253-265. |
[7] | Muhammad Salman, Liangliang Zhang, Jianfeng Chen. A computational simulation study for techno-economic comparison of conventional and stripping gas methods for natural gas dehydration [J]. Chinese Journal of Chemical Engineering, 2020, 28(9): 2285-2293. |
[8] | Xiaoyu Wang, Haibo Zhao, Mingze Su. A comparative process simulation study of Ca—Cu looping involving post-combustion CO2 capture [J]. Chinese Journal of Chemical Engineering, 2020, 28(9): 2382-2390. |
[9] | Shuo Zhang, Yifan Sun, Yiqing Luo, Hongzhe Hou, Xigang Yuan. Systematic exploration of the applicability of the idiomatic vapor balance rule to distillation column consolidation [J]. Chinese Journal of Chemical Engineering, 2020, 28(8): 2121-2130. |
[10] | Mirollah Hosseini, Hamid Hassanzadeh Afrouzi, Sina Yarmohammadi, Hossein Arasteh, Davood Toghraie, A. Jafarian Amiri, Arash Karimipour. Optimization of FX-70 refrigerant evaporative heat transfer and fluid flow characteristics inside the corrugated tubes using multi-objective genetic algorithm [J]. Chinese Journal of Chemical Engineering, 2020, 28(8): 2142-2151. |
[11] | Akbar Mohammadi, Jafarsadegh Moghaddas. Mesoporous tablet-shaped potato starch aerogels for loading and release of the poorly water-soluble drug celecoxib [J]. Chinese Journal of Chemical Engineering, 2020, 28(7): 1778-1787. |
[12] | Sishi Ye, Qiao Tang, Yundong Wang, Weiyang Fei. Structural optimization of a settler via CFD simulation in a mixer-settler [J]. Chinese Journal of Chemical Engineering, 2020, 28(4): 995-1015. |
[13] | Peixian Zang, Guoming Sun, Yongming Zhao, Yiqing Luo, Xigang Yuan. Stochastic optimization based on a novel scenario generation method for midstream and downstream petrochemical supply chain [J]. Chinese Journal of Chemical Engineering, 2020, 28(3): 815-823. |
[14] | Lukuan Yang, Wenqi Zhong, Li Sun, Xi Chen, Yingjuan Shao. Dynamic optimization oriented modeling and nonlinear model predictive control of the wet limestone FGD system [J]. Chinese Journal of Chemical Engineering, 2020, 28(3): 832-845. |
[15] | Xiaokai Xing, Zhonghua Zhao, Jianhang Wu. Direct image-based fractal characterization of micromorphology of calcium carbonate fouling crystals [J]. Chinese Journal of Chemical Engineering, 2020, 28(2): 466-476. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|