Chin.J.Chem.Eng. ›› 2013, Vol. 21 ›› Issue (3): 310-317.DOI: 10.1016/S1004-9541(13)60464-4
• CHEMICAL ENGINEERING THERMODYNAMICS • Previous Articles Next Articles
LEI Zhigang1, ZHANG Benfeng1, ZHU Jiqin1, GONG Wanfu2, L? Jianning2, LI Yansheng2
Received:
2011-11-14
Revised:
2012-03-02
Online:
2013-04-01
Published:
2013-03-28
Supported by:
Supported by the National Natural Science Foundation of China (21121064, 21076008), and the Projects in the National Science & Technology Pillar Program During the Twelfth Five-Year Plan Period (2011BAC06B04).
雷志刚1, 张本凤1, 朱吉钦1, 宫万福2, 吕建宁2, 李延生2
通讯作者:
LEI Zhigang
基金资助:
Supported by the National Natural Science Foundation of China (21121064, 21076008), and the Projects in the National Science & Technology Pillar Program During the Twelfth Five-Year Plan Period (2011BAC06B04).
LEI Zhigang, ZHANG Benfeng, ZHU Jiqin, GONG Wanfu, L? Jianning, LI Yansheng. Solubility of CO2 in Methanol, 1-Octyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide, and Their Mixtures[J]. Chin.J.Chem.Eng., 2013, 21(3): 310-317.
雷志刚, 张本凤, 朱吉钦, 宫万福, 吕建宁, 李延生. Solubility of CO2 in Methanol, 1-Octyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide, and Their Mixtures[J]. Chinese Journal of Chemical Engineering, 2013, 21(3): 310-317.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/S1004-9541(13)60464-4
1 Kroon, M.C., Karakatsani, E.K., Economou, I.G., Witkamp, G.J., Peters, C.J., “Modeling of the carbon dioxide solubility in imidazolium-based ionic liquids with the PC-PSAFT equation of state”, J. Phys. Chem. B, 110, 9262-9269 (2006). 2 Andreu, J.S., Vega, L.F., “Modeling the solubility behavior of CO2, H2, and Xe in [Cn-mim] [Tf2N] ionic liquids”, J. Phys. Chem. B, 112, 15398-15406 (2008). 3 Kim, Y.S., Choi, W.Y., Jang, J.H., Yoo, K.P., Lee, C.S., “Solubility measurement and prediction of carbon dioxide in ionic liquids”, Fluid Phase Equilib., 228, 439-445 (2005). 4 Schilderman, A.M., Raeissi, S., Peters, C.J., “Solubility of carbon dioxide in the ionic liquid 1-ethyl-3-methylimidazolium bis (trifiuoromethylsulfonyl) imide”, Fluid Phase Equilib., 260, 19-22 (2007). 5 Shariati, A., Peters, C.J., “High-pressure phase behavior of systems with ionic liquid: the binary system carbon dioxide+1-ethyl-3- methylimidazolium hexafiuorophosphate”, J. Supercrit. Fluids, 29, 43-48 (2004). 6 Soriano, A.N., Domajr, B.T., Li, M.H., “Carbon dioxide solubility in 1-ethyl-3-methylimidazolium trifluoromethanesulfonate”, J. Chem. Thermodyn., 41, 525-529 (2009). 7 Zhang, X.C., Huo, F., Liu, Z.P., Wang, W.C., Shi, W., Maginn, E.J., “Absorption of CO2 in the ionic liquid 1-n-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([hmim][FEP]): a molecular view by computer simulations”, J. Phys. Chem. B, 113, 7591-7598 (2009). 8 Shi, W., Maginn, E.J., “Atomistic simulation of the absorption of carbon dioxide and water in the ionic liquid 1-n-hexyl-3-methy- limidazolium bis(trifluoromethylsulfonyl) imide ([hmim][Tf2N])”, J. Phys. Chem. B, 112, 2045-2055 (2008). 9 Gutkowski, K.I., Shariati, A., Peters, C.J., “High-pressure phase behavior of the binary ionic liquid system 1-octyl-3-methylimidazolium tetrafiuoroborate+carbon dioxide”, J. Supercrit. Fluids, 39, 187-191 (2006). 10 Zhang, Z.F., Wu, W.Z., Wang, B., Chen, J.W., Shen, D., Han, B.X., “High-pressure phase behavior of CO2/acetone/ionic liquid system”, J. Supercrit. Fluids, 40, 1-6 (2007). 11 Anderson, J.L., Dixon, J.K., Brennecke, J.F., “Solubility of CO2, CH4, C2H6, C2H4, O2, and N<2 in 1-hexyl-3-methylpyridinium bis (trifiuoromethylsulfonyl)imide: comparison to other ionic liquids”, Acc. Chem. Res., 40, 1208-1216 (2007). 12 Ferguson, L., Scovazzo, P., “Solubility, diffusivity, and permeability of gases in phosphonium-based room temperature ionic liquids: data and correlations”, Ind. Eng. Chem. Res., 46, 1369-1374 (2007). 13 Zhang, S.J., Yuan, X.L., Chen, Y.H., Zhang, X.P., “Solubilities of CO2 in 1-butyl-3-methylimidazolium hexafiuorophosphate and 1,1,3,3-tetramethylguanidium lactate at elevated pressures”, J. Chem. Eng. Data, 50, 1582-1585 (2005). 14 Gomes, M.F.C., “Low-pressure solubility and thermodynamics of solvation of carbon dioxide, ethane, and hydrogen in 1-hexyl-3- methylimidazolium bis(trifiuoromethylsulfonyl)amide between temperatures of 283 K and 343 K”, J. Chem. Eng. Data, 52, 472-475 (2007). 15 Zhang, J., Zhang, Q.H., Qiao, B. T., Deng, Y.Q., “Solubilities of the gaseous and liquid solutes and their thermodynamics of solubilization in the novel room-temperature ionic liquids at infinite dilution by gas chromatography”, J. Chem. Eng. Data, 52, 2277-2283 (2007). 16 Song, H.N., Lee, B.C., Lim, J.S., “Measurement of CO2 solubility in ionic liquids: [BMP][TfO] and [P14,6,6,6][Tf2N] by measuring bubble-point pressure”, J. Chem. Eng. Data, 55, 891-896 (2010). 17 Yima, J.H., Songa, H.N., Leeb, B.C., Lima, J.S., “High-pressure phase behavior of binary mixtures containing ionic liquid [HMP][Tf2N], [OMP][Tf2N] and carbon dioxide”, Fluid Phase Equilib., 308, 147-152 (2011). 18 Yim, J.H., Song, H.N., Yoo, K.P., Lim, J.S., “Measurement of CO2 solubility in ionic liquids: [BMP][Tf2N] and [BMP][MeSO4] by measuring bubble-point pressure”, J. Chem. Eng. Data, 56, 1197-1203 (2011). 19 Silvana, M., Pedro, J.C., Joao, A.P.C., Víctor, H.A., Miguel, I., “High pressure CO2 solubility in N-methyl-2-hydroxyethylammonium protic ionic liquids”, J. Supercrit. Fluids, 56, 224-230 (2011). 20 Shariati, A., Gutkowski, K., Peters, C.J., “Comparison of the phase behavior of some selected binary systems with ionic liquids”, AIChE J., 51, 1532-1540 (2005). 21 Kroon, M.C., Shariati, A., Costantini, M., Spronsen, J.V., Witkamp, G.J., Sheldon, R.A., Peters, C.J., “High pressure phase behavior of systems with ionic liquids: Part V. the binary system carbon dioxide+1-butyl-3-methylimidazolium tetrafiuoroborate”, J. Chem. Eng. Data, 50, 173-176 (2005). 22 Shariati, A., Peters, C.J., “High-pressure phase behavior of systems with ionic liquids: Part III. The binary system carbon dioxide+1-hexyl-3-methylimidazolium hexafluorophosphate”, J. Supercrit. Fluids, 30, 139-144 (2004). 23 Costantini, M., Toussaint, V.A., Shariati, A., Peters, C.J., Kikic, I., “High-pressure phase behavior of systems with ionic liquids: Part IV. Binary system carbon dioxide+1-hexyl-3-methylimidazolium tetrafiuoroborate”, J. Chem. Eng. Data, 50, 52-55 (2005). 24 Blanchard, L.A., Gu, Z.Y., Brennecke, J.F., “High-pressure phase behavior of ionic liquid/CO2 systems”, J. Phys. Chem. B, 105, 2437-2444 (2001). 25 Aki, S.N.V.K., Mellein, B.R., Saurer, E.M., Brennecke, J.F., “High-pressure phase behavior of carbon dioxide with imidazolium-based ionic liquids”, J. Phys. Chem. B, 108, 20355-20365 (2004). 26 Jalili, A.H., Mehdizadeha, A., Shokouhia, M., Sakhaeiniab, H., Taghikhanic, V., “Solubility of CO2 in 1-(2-hydroxyethyl)-3-methylimidazolium ionic liquids with different anions”, J. Chem. Thermodyn., 42, 787-791 (2010). 27 Day, C.Y., Chang, C.J., Chen, C.Y., “Phase equilibrium of ethanol+CO2 and acetone+CO2 at elevated pressures”, J. Chem. Eng. Data, 41, 839-843 (1996). 28 Chiu, H.Y., Lee, M.J., Lin, H.M., “Vapor-liquid phase boundaries of binary mixtures of carbon dioxide with ethanol and acetone”, J. Chem. Eng. Data, 53, 2393-2402 (2008). 29 Lei, Z.G., Yuan, J., Zhu, J.Q., “Solubility of CO2 in propanone, 1-ethyl-3-methylimidazolium tetrafiuoroborate, and their mixtures”, J. Chem. Eng. Data, 55, 4190-4194 (2010). 30 White, C.M., Strazisar, B.R., Granite, E.J., Hoffman, J.S., Pennline, H.W., “Separation and capture of CO2 from large stationary sources and sequestration in geological formations: coal beds and deep saline aquifers”, J. Air Waste Manage. Assoc., 53, 645-715 (2003). 31 Heintz, Y.J., Sehabiague, L., Morsi, B.I., Jones, K.L., Pennline, H.W., “Novel physical solvents for selective CO2 capture from fuel gas streams at elevated pressures and temperatures”, Energ. Fuel., 22, 3824-3837 (2008). 32 Anthony, J.L., Maginn, E.J., Brennecke, J.F., “Solubilities and thermodynamic properties of gases in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate”, J. Phys. Chem. B, 106, 7315-7320 (2002). 33 Blanchard, L.A., Hancu, D., Beckman, E.J., Brennecke, J.F., “Green processing using ionic liquids and CO2”, Nature, 399, 28-29 (1999). 34 Hong, J.H., Kobayashi, R., “Vapor-liquid equilibrium studies for the carbon dioxide-methanol system”, Fluid Phase Equilib., 41, 269-216 (1988). 35 Abudour, A.M., Mohammad, S.A., Gasem, K.A.M., “Modeling high-pressure phase equilibria of coalbed gases/water mixtures with the Peng-Robinson equation of state”, Fluid Phase Equilib., 319, 77-89 (2012). 36 Lee, M.H., Yim, J.H., Kang, J.W., Lim, J.S., “Measurement of VLE data of carbon dioxide+dimethyl carbonate system for the direct synthesis of dimethyl carbonate using supercritical CO2 and methanol”, Fluid Phase Equilib., 318, 77-82 (2012). 37 Badilla, J. C., Peters, C. J., Arons, J. D. S., “Volume expansion in relation to the gas-antisolvent process”, J. Supercrit. Fluids, 17, 13-23 (2000). 38 Kamps, A.P.S., Tuma, D., Xia, J.Z., Maurer, G., “Solubility of CO2 in the ionic liquid [bmim][PF6]”, J. Chem. Eng. Data, 48, 746-749 (2003). 39 Span, R., Wagner, W., “A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100K at pressures up to 800MPa”, J. Phys. Chem. Ref. Data, 25, 1509-1596 (1996). 40 Reighard, T.S., Lee, S.T., Olesik, S.V., “Determination of methanol/CO2 and acetonitrile/CO2 vapor-liquid phase equilibria using a variable-volume view cell”, Fluid Phase Equilib., 123, 215-230 (1996). 41 Suzuki, K., Sue, H., “Isothermal vapor-liquid equilibrium data for binary systems at high pressures: carbon dioxide-methanol, carbon dioxide-ethanol, carbon dioxide-1-propanol, methane-ethanol, methane- 1-propanol, ethane-ethanol, and ethane-1-propanol systems”, J. Chem. Eng. Data, 35, 63-66 (1990). 42 Yoon, J.H., Lee, H.S., Lee, H., “High-pressure vapor-liquid equilibria for carbon dioxide+methanol, carbon dioxide+ethanol, and carbon dioxide+methanol+ethanol”, J. Chem. Eng. Data, 38, 53-55 (1993). 43 Miyano, Y., Fujihara, I., “Henry’s constants of carbon dioxide in methanol at 250-500 K”, Fluid Phase Equilib., 221, 57-62 (2004). 44 Palomar, J., Maria, G.M., Polo, A., Rodriguez, F., “Understanding the physical absorption of CO2 in ionic liquids using the COSMO-RS method”, Ind. Eng. Chem. Res., 50, 3452-3463 (2011). 45 Lei, Z.G., Chen, B.H., Li, C.Y., Liu, H., “Predictive molecular thermodynamic models for liquid solvents, solid salts, polymers, and ionic liquids”, Chem. Rev., 108, 1419-1455 (2008). 46 Kato, R., Gmehling, J., “Systems with ionic liquids: measurement of VLE and gamma (infinity) data and prediction of their thermodynamic behavior using original UNIFAC, mod. UNIFAC (Do) and COSMO-RS (OI)”, J. Chem. Thermodyn., 37, 603-619 (2005). 47 Klamt, A., “Prediction of the mutual solubilities of hydrocarbons and water with COSMO-RS”, Fluid Phase Equilib., 206, 223-235 (2003). 48 Banerjee, T., Khanna, A., “Infinite dilution activity coefficients for trihexyltetradecyl phosphonium ionic liquids: measurements and COSMO-RS prediction”, J. Chem. Eng. Data, 51, 2170-2177 (2006). 49 Diedenhofen, M., Eckert, F., Klamt, A., “Prediction of infinite dilution activity coefficients of organic compounds in ionic liquids using COSMO-RS”, J. Chem. Eng. Data, 48, 475-479 (2003). 50 Klamt, A., Jonas, V., Burger, T., Lohrenz, J. C. W., “Refinement and parametrization of COSMO-RS”, J. Phys. Chem. A, 102, 5074-5085 (1998). 51 Shifiett, M.B., Yokozeki, A., “Phase behavior of carbon dioxide in ionic liquids: [emim][Acetate], [emim][Trifiuoroacetate], and [emim][Acetate]+[emim][Trifiuoroacetate] mixtures”, J. Chem. Eng. Data, 54, 108-114 (2009). |
[1] | Jingzhou Guo, Yuanzuo Zou, Bo Shi, Yuan Pu, Jiexin Wang, Dan Wang, Jianfeng Chen. Experimental verification of nanonization enhanced solubility for poorly soluble optoelectronic molecules [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 8-15. |
[2] | Xingjuan Liang, Dehua Xu, Zhengjuan Yan, Jingxu Yang, Xinlong Wang, Zhiye Zhang, Jingli Wu, Honggang Zhen. Solid-liquid phase equilibrium for the system ammonium polyphosphate-urea ammonium nitrate-potassium chloride-water at 273.2 K [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 131-142. |
[3] | Eileen Katherine Coronado-Aldana, Cindy Lizeth Ferreira-Salazar, Nubia Yineth Piñeros-Castro, Rubén Vázquez-Medina, Felipe A. Perdomo. Thermodynamic analysis, synthesis, characterization, and evaluation of 1-ethyl-3-methylimidazolium chloride: Study of its effect on pretreated rice husk [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 143-154. |
[4] | Huiqi Wang, Jianpo Ren, Shihao Zhang, Jiayu Dai, Yue Niu, Ketao Shi, Qiuxiang Yin, Ling Zhou. Measurement and correlation of solubility of 9-fluorenone in 11 pure organic solvents from T = 283.15 to 323.15 K [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 235-241. |
[5] | Wen Yu, Yiyang Bo, Yiling Luo, Xiyan Huang, Rixiang Zhang, Jiaheng Zhang. Enhancing effect of choline chloride-based deep eutectic solvents with polyols on the aqueous solubility of curcumin-insight from experiment and theoretical calculation [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 160-168. |
[6] | Zhonghao Li, Yuanyuan Yang, Huanong Cheng, Yun Teng, Chao Li, Kangkang Li, Zhou Feng, Hongwei Jin, Xinshun Tan, Shiqing Zheng. Measurement and model of density, viscosity, and hydrogen sulfide solubility in ferric chloride/trioctylmethylammonium chloride ionic liquid [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 210-221. |
[7] | Tingjun Fu, Ran Wang, Kun Ren, Liangliang Zhang, Zhong Li. Intensified shape selectivity and alkylation reaction for the two-step conversion of methanol aromatization to p-xylene [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 240-250. |
[8] | Chen Chen, Qiong Tang, Hong Xu, Mingxing Tang, Xuekuan Li, Lei Liu, Jinxiang Dong. Alkyl-tetralin base oils synthesized from coal-based chemicals and evaluation of their lubricating properties [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 20-28. |
[9] | Pengcheng Zou, Kai Wang. Methanolysis of amides under high-temperature and high-pressure conditions with a continuous tubular reactor [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 170-178. |
[10] | Yun-Zhang Liu, Lu-Yao Zhang, Dan He, Li-Zhen Chen, Zi-Shuai Xu, Jian-Long Wang. Solubility measurement, correlation and thermodynamic properties of 2, 3, 4-trichloro-1, 5-dinitrobenzene in fifteen mono-solvents at temperatures from 278.15 to 323.15 K [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 224-233. |
[11] | Yutong Jiang, Yifeng Chen, Fuliu Yang, Jixue Fan, Jun Li, Zhuhong Yang, Xiaoyan Ji. Efficient SO2 removal using aqueous ionic liquid at low partial pressure [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 355-363. |
[12] | Pengbao Lian, Lizhen Chen, Dan He, Guangyuan Zhang, Zishuai Xu, Jianlong Wang. Crystallization thermodynamics of 2,4(5)-dinitroimidazole in binary solvents [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 173-182. |
[13] | Jian Wang, Yuanhui Shen, Donghui Zhang, Zhongli Tang, Wenbin Li. Integrated vacuum pressure swing adsorption and Rectisol process for CO2 capture from underground coal gasification syngas [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 265-279. |
[14] | Shujun Peng, Song Lei, Sisi Wen, Jian Xue, Haihui Wang. A Ruddlesden–Popper oxide as a carbon dioxide tolerant cathode for solid oxide fuel cells that operate at intermediate temperatures [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 25-32. |
[15] | Xingzhong Li, Kunlin Yu, Zibo He, Bo Liu, Rongfei Zhou, Weihong Xing. Improved SSZ-13 thin membranes fabricated by seeded-gel approach for efficient CO2 capture [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 273-280. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||