Chin.J.Chem.Eng. ›› 2014, Vol. 22 ›› Issue (2): 153-163.DOI: 10.1016/S1004-9541(14)60006-9
Previous Articles Next Articles
XU Junchen, WANG Song, YU Wen, XU Qinqin, WANG Weibin, YIN Jianzhong
Received:
2012-11-15
Revised:
2013-01-25
Online:
2014-01-28
Published:
2014-02-05
Contact:
YIN Jianzhong
Supported by:
Supported by the National Natural Science Foundation of China (20976026, 20976028) and the Natural Science Foundation of Liaoning Province (20102030, 20031072).
徐君臣, 王松, 喻文, 徐琴琴, 王伟彬, 银建中
通讯作者:
YIN Jianzhong
基金资助:
Supported by the National Natural Science Foundation of China (20976026, 20976028) and the Natural Science Foundation of Liaoning Province (20102030, 20031072).
XU Junchen, WANG Song, YU Wen, XU Qinqin, WANG Weibin, YIN Jianzhong. Molecular Dynamics Simulation for the Binary Mixtures of High Pressure Carbon Dioxide and Ionic Liquids[J]. Chin.J.Chem.Eng., 2014, 22(2): 153-163.
徐君臣, 王松, 喻文, 徐琴琴, 王伟彬, 银建中. Molecular Dynamics Simulation for the Binary Mixtures of High Pressure Carbon Dioxide and Ionic Liquids[J]. Chinese Journal of Chemical Engineering, 2014, 22(2): 153-163.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/S1004-9541(14)60006-9
1 Blanchard, L.A., Hancu, D., Beckman, E.J., Brennecke, J.F., "Green processing using ionic liquids and CO2", Nature, 399 (6731), 28-29 (1999).2 Lin, I.H., Tan, C.S., "Diffusion of benzonitrile in CO2-expanded ethanol", J. Chem. Eng. Data, 53 (8), 1886-1891 (2008).3 Sun, H.W., "Ionic liquids: Progress and prospective", Chin. J. Chem. Eng., 13 (6), 830-834 (2005).4 Earle, M.J., Esperanca, J., Gilea, M.A., Lopes, J.N.C., Rebelo, L.P.N., Magee, J.W., Gilea, K.R., Seddon, M.A., Widegren, J.A., "The distillation and volatility of ionic liquids", Nature, 439 (7078), 831-834 (2006).5 Wasserscheid, P., "Chemistry—Volatile times for ionic liquids", Na-ture, 439 (7078), 797-797 (2006).6 Zhao, Z., Dong, H., Zhang, X., "The research progress of CO2 capture with ionic liquids", Chin. J. Chem. Eng., 20 (1), 120-129 (2012).7 Earle, M.J., Seddon, K.R., "Ionic liquids. Green solvents for the fu-ture", Pure Appl. Chem., 72 (7), 1391-1398 (2000).8 Fang, S., Zhang, Z., Jin, Y., Yang, L., Hirano, S., Tachibana, K., Katayama, S., "New functionalized ionic liquids based on pyrrolidi-nium and piperidinium cations with two ether groups as electrolytes for lithium battery", J. Power Sources, 196 (13), 5637-5644 (2011).9 Blanchard, L.A., Brennecke, J.F., "Recovery of organic products from ionic liquids using supercritical carbon dioxide", Ind. Eng. Chem. Res., 40 (1), 287-292 (2000).10 Wang, W., Yin, J., "CO2/ionic liquids phase Behaviors and its appli-cations for reaction and separation", Prog. Chem., 20 (4), 441-449 (2008). (in Chinese)11 Shiflett, M.B., Yokozeki, A., "Solubilities and diffusivities of carbon dioxide in ionic liquids: [bmim][PF6] and [bmim][BF4]", Ind. Eng. Chem. Res., 44 (12), 4453-4464 (2005).12 Lu, J., Liotta, C.L., Eckert, C.A., "Spectroscopically probing microscopic solvent properties of room-temperature ionic liquids with the addition of carbon dioxide", J. Phys. Chem. A, 107 (19), 3995-4000 (2003). 13 Tomida, D., Kumagai, A., Qiao, K., Yokoyama, C., "Viscosity of 1-butyl-3-methylimidazolium hexafluorophosphate + CO2 mixture", J. Chem. Eng. Data, 52 (5), 1638-1640 (2007).14 Babarao, R., Dai, S., Jiang, D.E., "Understanding the high solubility of CO2 in an ionic liquid with the tetracyanoborate anion", J. Phys. Chem. B, 115 (32), 9789-9794 (2011).15 Perez-Blanco, M.E., Maginn, E.J., "Molecular dynamics simulations of CO2 at an ionic liquid interface: Adsorption, ordering, and inter-facial crossing", J. Phys. Chem. B, 114 (36), 11827-11837 (2010).16 Wang, Y., Pan, H., Li, H., Wang, C., "Force field of the TMGL ionic liquid and the solubility of SO2 and CO2 in the TMGL from molecular dynamics simulation", J. Phys. Chem. B, 111 (35), 10461-10467 (2007).17 Wang, W.B., Yin, J.Z., Sun, L.H., Feng, E., "Molecular dynamics simulation of thermodynamic properties for CO2/ionic liquid systems", Acta Phys. Chim. Sin., 25 (11), 2291-2295 (2009). (in Chinese)18 Kazarian, S.G., Briscoe, B.J., Welton, T., "Combining ionic liquids and supercritical fluids: in situ ATR-IR study of CO2 dissolved in two ionic liquids at high pressures", Chem. Commun., 36 (20), 2047-2048 (2000).19 Fredlake, C.P., Muldoon, M.J., Aki, S., Welton, T., Brennecke, J.F., "Solvent strength of ionic liquid/CO2 mixtures", Phys. Chem. Chem. Phys., 6 (13), 3280-3285 (2004).20 Kanakubo, M., Umecky, T., Hiejima, Y., Aizawa, T., Nanjo, H., Kameda, Y., "Solution structures of 1-butyl-3-methylimidazolium hexanuorophosphate ionic liquid saturated with CO2: Experimental evidence of specific anion-CO2 interaction", J. Phys. Chem. B, 109 (29), 13847-13850 (2005).21 Hou, Y., Baltus, R.E., "Experimental measurement of the solubility and diffusivity of CO2 in room temperature ionic liquids using a transient thin-liquid-film method", Ind. Eng. Chem. Res., 46 (24), 8166-8175 (2007).22 Shim, Y., Kim, H.J., "MD study of solvation in the mixture of a room temperature ionic liquid and CO2", J. Phys. Chem. B, 114 (31), 10160-10170 (2010).23 Bhargava, B.L., Balasubramanian, S., "Insights into the structure and dynamics of a room temperature ionic liquid: Ab initio molecular dynamics simulation studies of 1-n-butyl-3-methylimidazolium hex-afluorophosphate ([bmim][PF6]) and the [bmim][PF6]-CO2 mixture", J. Phys. Chem. B, 111 (17), 4477-4487 (2007).24 Bhargava, B.L., Krishna, A.C., Balasubramanian, S., "Molecular dynamics simulation studies of CO2-[bmim][PF6] solutions: Effect of CO2 concentration", AIChE J., 54 (11), 2971-2978 (2008).25 Huang, X., Margulis, C.J., Li, Y., Berne, B.J., "Why is the partial molar volume of CO2 so small when dissolved in a room temperature ionic liquid? Structure and dynamics of CO2 dissolved in [Bmim+][PF6]", J. Am. Chem. Soc., 127 (50), 17842-17851 (2005).26 Cadena, C., Anthony, J.L., Shah, J.K., Morrow, T.I., Brennecke, J.F., Maginn, E.J., "Why is CO2 so soluble in imidazolium-based ionic liquids?", J. Am. Chem. Soc., 126 (16), 5300-5308 (2002).27 Canongia Lopes, J.N., Deschamps, J., Pádua, A.A.H., "Modeling ionic liquids using a systematic all-atom force field", J. Phys. Chem. B, 108 (6), 2038-2047 (2004).28 Liu, Z., Huang, S., Wang, W., "A refined force field for molecular simulation of imidazolium-based ionic liquids", J. Phys. Chem. B, 108 (34), 12978-12989 (2004).29 Micaelo, N.M., Baptista, A.M., Soares, C.M., "Parametrization of 1-butyl-3- methylimidazolium hexafluorophosphate/nitrate ionic liquid for the GROMOS force field", J. Phys. Chem. B, 110 (29), 14444-14451 (2006).30 Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., Kollman, P.A., "A second generation force field for the simulation of proteins, nucleic acids, and organic molecules", J. Am. Chem. Soc., 117 (19), 5179-5197 (1995).31 Yan, T., Burnham, C.J., Del Pópolo, M.G., Voth, G.A., "Molecular dynamics simulation of ionic liquids: The effect of electronic pola-rizability", J. Phys. Chem. B, 108 (32), 11877-11881 (2004).32 Houndonougbo, Y., Jin, H., Rajagopalan, B., Wong, K., Kuczera, K., Subramaniam, B., Laird, B., "Phase equilibria in carbon dioxide ex-panded solvents: Experiments and molecular simulations", J. Phys. Chem. B, 110 (26), 13195-13202 (2006).33 Qin, Y., Yang, X., Zhu, Y., Ping, J., "Molecular dynamics simulation of interaction between supercritical CO2 fluid and modified silica surfaces", J. Phys. Chem. C, 112 (33), 12815-12824 (2008).34 Senapati, S., Berkowitz, M.L., "Molecular dynamics simulation studies of polyether and perfluoropolyether surfactant based reverse micelles in supercritical carbon dioxide", J. Phys. Chem. B, 107 (47), 12906-12916 (2003).35 Liu, Z., Wu, W., Han, B., Dong, Z., Zhao, G., Wang, J., Jiang, T., Yang, G., "Study on the phase behaviors, viscosities, and thermody-namic properties of CO2/[C4mim][PF6]/methanol system at elevated pressures", Chem. Eur. J., 9 (16), 3897-3903 (2003).36 Blanchard, L.A., Gu, Z., Brennecke, J.F., "High-pressure phase be-havior of ionic liquid/CO2 systems", J. Phys. Chem. B, 105 (12), 2437-2444 (2001).37 Berendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.F., DiNola, A., Haak, J.R., "Molecular dynamics with coupling to an external bath", J. Chem. Phys., 81 (8), 3684-3690 (1984).38 Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., Pedersen, L.G., "A smooth particle mesh Ewald method", J. Chem. Phys., 103 (19), 8577-8593 (1995).39 Dong, K., Zhang, S., Wang, D., Yao, X., "Hydrogen bonds in imidazolium ionic liquids", J. Phys. Chem. A, 110 (31), 9775-9782 (2006).40 Morgan, D., Ferguson, L., Scovazzo, P., "Diffusivities of gases in room temperature ionic liquids: Data and correlations obtained using a lag-time technique", Ind. Eng. Chem. Res., 44 (13), 4815-4823 (2005).41 Rapaport, D.C., The Art of Molecular Dynamics Simulation, 2nd edition, Cambridge University Press, Cambridge (2004).42 Shiflett, M.B., Yokozeki, A., "Solubility and diffusivity of hydrofluorocarbons in room temperature ionic liquids", AIChE J., 52 (3), 1205-1219 (2006).43 Kim, D.H., Baek, I.H., Hong, S.U., Lee, H.K., "Study on immobi-lized liquid membrane using ionic liquid and PVDF hollow fiber as a support for CO2/N2 separation", J. Membr. Sci., 372 (1/2), 346-354 (2011).44 Iarikov, D.D., Hacarlioglu, P., Oyama, S.T., "Supported room temperature ionic liquid membranes for CO2/CH4 separation", Chem. Eng. J., 166 (1), 401-406 (2011).45 Knez, Z., Weidner, E., "Particles formation and particle design using supercritical fluids", Curr. Opin. Solid State Mater. Sci., 7 (4/5), 353-361 (2003).46 Shariati, A., Peters, C.J., "Recent developments in particle design using supercritical fluids", Curr. Opin. Solid State Mater. Sci., 7 (4/5), 371-383 (2003).47 de la Fuente Badilla, J.C., Peters, C.J., de Swaan Arons, J., "Volume expansion in relation to the gas—Antisolvent process", Fluid Phase Equilib., 17 (1), 13-23 (2000).48 Gallagher, P.M., Coffey, M.P., Krukonis, V.J., Klasutis, N., "Gas antisolvent recrystallization: New process to recrystallize compounds insoluble in supercritical fluids", In: Supercritical Fluid Science and Technology, American Chemical Society, USA, 406 (22), 334-354 (1989).49 Aki, S.N.V.K., Mellein, B.R., Saurer, E.M., Brennecke, J.F., "High-pressure phase behavior of carbon dioxide with imidazolium- based ionic liquids", J. Phys. Chem. B, 108 (52), 20355-20365 (2004).50 Kordikowski, A., Schenk, A.P., Van Nielen, R.M., Peters, C.J., "Volume expansions and vapor-liquid equilibria of binary mixtures of a variety of polar solvents and certain near-critical solvents", J. Supercrit. Fluids., 8 (3), 205-216 (1995).51 Liu, X., Zhou, G., Zhang, S., Wu, G., Yu, G., "Molecular simulation of guanidinium-based ionic liquids", J. Phys. Chem. B, 111 (20), 5658-5668 (2007).52 Fioroni, M., Burger, K., Mark, A.E., Roccatano, D., "A new 2,2,2-trifluoroethanol model for molecular dynamics simulations", J. Phys. Chem. B, 104 (51), 12347-12354 (2000).53 Fredlake, C.P., Crosthwaite, J.M., Hert, D.G., Aki, S.N.V.K., Bren-necke, J.F., "Thermophysical properties of imidazolium-based ionic liquids", J. Chem. Eng. Data, 49 (4), 954-964 (2002).54 Chandran, A., Prakash, K., Senapati, S., "Self-assembled inverted micelles stabilize ionic liquid domains in supercritical CO2", J. Am. Chem. Soc., 132 (35), 12511-12516 (2010). |
[1] | Chaojie Li, Xianxin Fang, Meiling Sun, Jihai Duan, Weiwen Wang. Study on two-phase cloud dispersion from liquefied CO2 release [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 37-45. |
[2] | Eileen Katherine Coronado-Aldana, Cindy Lizeth Ferreira-Salazar, Nubia Yineth Piñeros-Castro, Rubén Vázquez-Medina, Felipe A. Perdomo. Thermodynamic analysis, synthesis, characterization, and evaluation of 1-ethyl-3-methylimidazolium chloride: Study of its effect on pretreated rice husk [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 143-154. |
[3] | Xinxin Li, Hongwei Shao, Shichao Zhang, Yong Li, Jingjing Gu, Qiang Huang, Jin Ran. Two dimensional MoS2 finding its way towards constructing high-performance alkaline recovery membranes [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 155-164. |
[4] | Jindong Dai, Chi Zhai, Jiali Ai, Guangren Yu, Haichao Lv, Wei Sun, Yongzhong Liu. A cellular automata framework for porous electrode reconstruction and reaction-diffusion simulation [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 262-274. |
[5] | Xun Tao, Fan Zhou, Xinlei Yu, Songling Guo, Yunfei Gao, Lu Ding, Guangsuo Yu, Zhenghua Dai, Fuchen Wang. Effect of carbon dioxide on oxy-fuel combustion of hydrogen sulfide: An experimental and kinetic modeling [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 105-117. |
[6] | Zhonghao Li, Yuanyuan Yang, Huanong Cheng, Yun Teng, Chao Li, Kangkang Li, Zhou Feng, Hongwei Jin, Xinshun Tan, Shiqing Zheng. Measurement and model of density, viscosity, and hydrogen sulfide solubility in ferric chloride/trioctylmethylammonium chloride ionic liquid [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 210-221. |
[7] | Chen Chen, Qiong Tang, Hong Xu, Mingxing Tang, Xuekuan Li, Lei Liu, Jinxiang Dong. Alkyl-tetralin base oils synthesized from coal-based chemicals and evaluation of their lubricating properties [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 20-28. |
[8] | Wende Tian, Jiawei Zhang, Zhe Cui, Haoran Zhang, Bin Liu. Microscopic mechanism study and process optimization of dimethyl carbonate production coupled biomass chemical looping gasification system [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 291-305. |
[9] | Yutong Jiang, Yifeng Chen, Fuliu Yang, Jixue Fan, Jun Li, Zhuhong Yang, Xiaoyan Ji. Efficient SO2 removal using aqueous ionic liquid at low partial pressure [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 355-363. |
[10] | Tatyana P. Adamova, Sergey S. Skiba, Andrey Yu. Manakov, Sergey Y. Misyura. Growth rate of CO2 hydrate film on water–oil and water–gaseous CO2 interface [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 266-272. |
[11] | Zhihao Zhu, Ying Sun, Haijun Yu, Meng Li, Xingming Jie, Guodong Kang, Yiming Cao. Effect of polytetrafluoroethylene hollow fiber microstructure on formaldehyde carbonylation performance in membrane contactor [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 148-155. |
[12] | Fufeng Liu, Luying Jiang, Jingcheng Sang, Fuping Lu, Li Li. Molecular basis of cross-interactions between Aβ and Tau protofibrils probed by molecular simulations [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 173-180. |
[13] | Bowen Jiang, Jia Liu, Guoqiang Yang, Zhibing Zhang. Efficient conversion of CO2 into cyclic carbonates under atmospheric by halogen and metal-free poly(ionic liquid)s [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 202-211. |
[14] | Mingdong Sun, Dongxin Pan, Tingting Ye, Jing Gu, Yu Zhou, Jun Wang. Ionic porous polyamide derived N-doped carbon towards highly selective electroreduction of CO2 [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 212-221. |
[15] | Yu Wang, Qunfeng Zhang, Xinlei Liu, Junqi Weng, Guanghua Ye, Xinggui Zhou. Probing deactivation by coking in catalyst pellets for dry reforming of methane using a pore network model [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 293-303. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||