[1] Y. Zhao, B. Huang, H. Su, J. Chu, Prediction error method for identification of LPV models, J. Process Control 22 (1) (2012) 180-193. [2] T. Proll, M.N. Karim, Model-predictive pH control using real time NARX approach, AIChE J. 2 (40) (1994) 269-282. [3] S. Piche, B. Sayyar-Rodsari, D. Johnson, M. Gerules, Nonlinear model predictive control using neural networks, IEEE Control. Syst. Mag. 3 (20) (2000) 53-62. [4] R.K. Person, M. Pottmann, Gray-box identification of block-oriented nonlinear models, J. Process Control 10 (4) (2000) 301-315. [5] V. Laurain, M. Cilson, R. Toth, H. Garnier, Refined instrumental variable methods for identification for LPV Box-Jenkins models, Automatica 46 (2010) 959-967. [6] J. Shamma, M. Athans, Guaranteed properties of gain scheduled control for linear parameter varying plants, Automatica 27 (1991) 559-564. [7] V. Verdult,M. Verhaegen, Subspace identification ofmultivariable linear parametervarying systems, Automatica 38 (5) (2002) 805-814. [8] B. Bamieh, L. Giarre, Identification of linear parameter varying models, Int. J. Robust Nonlinear Control 12 (2002) 841-853. [9] J.Y. Shin, Worst-case analysis and linear parameter-varying gain-scheduled control of aerospace systems, (Ph.D. thesis) University of Minnesota, Minneapolis, USA, 2000. [10] Y.C. Zhu, Z. Xu, A method of LPV model identification for control, Proceedings of the 17th IFAC World Congress, Seoul, Korea, 2008. [11] X. Jin, B. Huang, D.S. Shook,Multiple model LPV approach to nonlinear process identification with EM algorithm, J. Process Control 21 (2011) 182-193. [12] J.Y. Huang, G.L. Ji, Y.C. Zhu, P.V.D. Bosch, Identification of multi-model LPV models with two scheduling variables, J. Process Control 22 (7) (2012) 1198-1208. [13] A. Boukhris, G. Mourot, J. Ragot, Non-linear dynamic system identification: a multimodel approach, Int. J. Control 72 (1999) 591-604. [14] D.H. Hong, C. Hwang, C. Ahn, Ridge estimation for regression models with crisp inputs and Gaussian fuzzy output, Fuzzy Sets Syst. 142 (2004) 307-319. [15] Y.C. Zhu, Multivariable System Identification for Process Control, Elsevier, London, UK, 2001. |