[1] L. Fortuna, S. Graziani, A. Rizzo, G.M. Xibilia, Soft sensors for monitoring and control of industrial processes, Springer-Verlag, London, 2007. [2] P. Kadlec, B. Gabrys, S. Strandt, Data-driven soft sensors in the process industry, Comput. Chem. Eng. 33 (4) (2009) 795-814. [3] Z.Q. Ge, Z.H. Song, Semisupervised Bayesian method for soft sensor modeling with unlabeled data samples, AIChE J. 57 (8) (2011) 2109-2118. [4] H.J. Galicia, Q.P. He, W. Jin, A reduced order soft sensor approach and its application to continuous digester, J. Process Control 21 (4) (2011) 489-500. [5] J.C.B. Gonzaga, L.A.C. Meleiro, C. Kiang, R. Maciel Filho, ANN-based soft-sensor for real-time process motoring and control of an industrial polymerization process, Comput. Chem. Eng. 33 (1) (2009) 43-49. [6] J. Yu, A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses, Comput. Chem. Eng. 41 (1) (2012) 134-144. [7] P. Kadlec, R. Grbić, Review of adaptation mechanisms for data-driven soft sensors, Comput. Chem. Eng. 35 (1) (2011) 1-24. [8] J. Tang, W. Yu, T.Y. Chai, L.J. Zhao, On-line principal component analysis with application to process modeling, Neurocomputing 87 (4) (2012) 167-178. [9] S.J. Qin, Recursive PLS algorithms for adaptive data modeling, Comput. Chem. Eng. 22 (4-5) (1998) 503-514. [10] P.Wang,H.G. Tian,X.M.Tian, D.X. Huang,Anewapproach foronlineadaptivemodeling using incremental support vector regression, CISEC J. 61 (8) (2010) 2040-2045. [11] O. Carlos, O. Edward, Efficient disk-based k-means clustering for relational databases, IEEE Trans. Knowl. Data Eng. 16 (8) (2004) 909-921. [12] Y.F. Fu, H.Y. Su, Y. Zhang, J. Chu, Adaptive soft-sensor modeling algorithm based on FCMISVMand its application in PX adsorption separation process, Chin. J. Chem. Eng. 16 (5) (2008) 746-751. [13] J. Yu, Online quality prediction of nonlinear and non-Gaussian chemical processes with shifting dynamics using finite mixture model based Gaussian process regression approach, Chem. Eng. Sci. 82 (2012) 22-30. [14] K. Fujiwara, M. Kano, S. Hasebe, A. Takinami, Soft-sensor development using correlation-based just-in-time modeling, AIChE J. 55 (7) (2009) 1754-1764. [15] W.D. Ni, S.K. Tan,W.J. Ng, S.D. Brown, Localized, adaptive recursive partial least squares regression for dynamic system modeling, Ind. Eng. Chem. Res. 51 (8) (2012) 8025-8039. [16] P. Kadlec, B. Gabrys, Local learning-based adaptive soft sensor for catalyst activation prediction, AIChE J. 57 (5) (2009) 1288-1301. [17] S. Khatibisepehr, B. Huang, F.W. Xu, A. Espejo, A Bayesian approach to design of adaptive multi-model inferential soft sensors with application in oil sand industry, J. Process Control 22 (10) (2012) 1913-1929. [18] S.N. Zhang, F.L. Wang, D.K. He, R.D. Jia, Real-time product quality control for batch processes based on stacked least-squares support vector regressionmodels, Comput. Chem. Eng. 36 (10) (2012) 217-226. [19] C. Cheng, M.S. Chiu, A newdata-basedmethodology for nonlinear processmodeling, Chem. Eng. Sci. 59 (13) (2004) 2801-2810. [20] K. Chen, J. Ji,H.Q.Wang, Z.H. Song,Adaptive local kernel-based learning for soft sensor modeling of nonlinear processes, Chem. Eng. Res. Des. 89 (10) (2011) 2117-2124. [21] Y. Liu, Z.L. Gao, P. Li, H.Q.Wang, Just-in-time kernel learning with adaptive parameter selection for soft sensor modeling of batch processes, Ind. Eng. Chem. Res. 51 (11) (2012) 4313-4327. [22] Y.Q. Liu, D.P. Huang, Y. Li, Development of interval soft sensors using enhanced just-in-time learning and inductive confidence predictor, Ind. Eng. Chem. Res. 51 (8) (2012) 3356-3367. [23] P. Kadlec, B. Gabrys, Adaptive on-line prediction soft sensing without historical data, Proceedings of the 2010 International Joint Conference on Neural Networks, Barcelona, 2010. [24] P. Geladi, R.K. Bruce, Partial least-squares regression: a tutorial, Anal. Chim. Acta. 185 (1986) 1-17. [25] F. Lindgren, P. Geladi, S.Wold, The kernel algorithmfor PLS, J. Chemom. 7 (1) (1993) 45-59. [26] B.S. Dayal, J.F. MacGregor, Improved PLS algorithms, J. Chemom. 11 (1) (1997) 73-85. [27] J.L. Liu, Development of self-validating soft sensors using fast moving window partial least squares, Ind. Eng. Chem. Res. 49 (22) (2010) 11530-11546. [28] X.Q. He, multivariate statistical analysis, China Renmin University Press, Beijing, 2004. [29] Y. Liu, H.Q. Wang, J. Yu, P. Li, Selective recursive kernel learning for online identification of nonlinear systems with NARX form, J. Process Control 20 (2) (2010) 181-194. |