[1] J.G. Huddleston, H.D.Willauer, R.P.A.E. Swatloski, R.D. Rogers Visser, Room temperature ionic liquids as novel media for ‘clean' liquid-liquid extraction, Chem. Commun. 16 (1998) 1765-1766. [2] J.H. Davis, Task-specific ionic liquids, Chem. Lett. 33 (2004) 1072-1077. [3] V.M. Egorov, D.I. Djigailo, D.S. Momotenko, D.V. Chernyshov, I.I. Torocheshnikova, S.V. Smirnova, I.V. Pletnev, Task-specific ionic liquid trioctylmethylammonium salicylate as extraction solvent for transition metal ions, Talanta 80 (3) (2010) 1177-1182. [4] D. Kogelnig, A. Stojanovic, M. Galanski, M. Groessl, F. Jirsa, R. Krachler, B.K. Keppler, Greener synthesis of new ammonium ionic liquids and their potential as extracting agents, Tetrahedron Lett. 49 (17) (2008) 2782-2785. [5] Y.H. Liu, L.L. Zhu, X.Q. Sun, J. Chen, Toward greener separations of rare earths: bifunctional ionic liquid extractants in biodiesel, AICHE J. 56 (9) (2010) 2338-2346. [6] H.M. Luo, S. Dai, P.V. Bonnesen, Solvent extraction of Sr2+ and Cs+ based on roomtemperature ionic liquids containing monoa-za-substituted crown ethers, Anal. Chem. 76 (10) (2004) 2773-2779. [7] W. Wang, Y. Liu, A.M. Xu, H.L. Yang, H.M. Cui, J. Chen, Solvent extraction of yttrium by task-specific ionic liquids bearing carboxylic group, Chin. J. Chem. Eng. 20 (1) (2012) 40-46. [8] A. Ouadi, B. Gadenne, P. Hesemann, J.J.E. Moreau, I. Billard, C. Gaillard, S. Mekki, G. Moutiers, Task-specific ionic liquids bearing 2-hydroxybenzylamine units: synthesis and americium-extraction studies, Chem. Eur. J. 12 (11) (2006) 3074-3081. [9] A. Ouadi, O. Klimchuk, C. Gaillard, I. Billard, Solvent extraction of U(VI) by task specific ionic liquids bearing phosphoryl groups, Green Chem. 9 (11) (2007) 1160-1162. [10] X.Q. Sun, Y. Ji, F. Hu, B. He, J. Chen, D.Q. Li, The inner synergistic effect of bifunctional ionic liquid extractant for solvent extraction, Talanta 81 (4-5) (2010) 1877-1883. [11] J.P. Mikkola, P. Virtanena, R. Sjöholm, Aliquat 336((R))—a versatile and affordable cation source for an entirely new family of hydrophobic ionic liquids, Green Chem. 8 (3) (2006) 250-255. [12] X.Q. Sun, Y. Ji, Y. Liu, J. Chen, D.Q. Li, An engineering-purpose preparation strategy for ammonium-type ionic liquid with high purity, AICHE J. 56 (4) (2010) 989-996. [13] W. Wang, H.L. Yang, H.M. Cui, D.L. Zhang, Y. Liu, J. Chen, Application of bifunctional ionic liquid extractants [A336][CA-12] and [A336][CA-100] to the lanthanumextraction and separation from rare earths in the chloride medium, Ind. Eng. Chem. Res. 50 (12) (2011) 7534-7541. [14] D.L. Zhang, W.Wang, Y.F. Deng, J.P. Zhang, H. Zhao, J. Chen, Extraction and recovery of Cerium(IV) and Fluorine(I) from sulfuric solutions using bifunctional ionic liquid extractants, Chem. Eng. J. 179 (2012) 19-25. [15] H.L. Yang,W.Wang, H.M. Cui, J. Chen, Extraction mechanism of rare earths with bifunctional ionic liquids [A336][CA-12]/[A336][CA-100] in nitrate medium, Chin. J. Anal. Chem. 39 (10) (2011) 1561-1566. [16] W. Li, X.L. Wang, S.L. Meng, D.Q. Li, Y. Xiong, Extraction and separation of yttrium from the rare earths with sec-octylphenoxy acetic acid in chloride media, Sep. Purif. Technol. 54 (2) (2007) 164-169. [17] G.X. Xu, Rare Earths, Metallurgical Industry Press, Beijing, 1995. 471-500. [18] X.L. Wang, S.L. Meng, D.Q. Li, Extraction kinetics of ytterbium (Ⅲ) by 2- ethylhexylphosphonic acidmono-(2-ethylhexyl) ester in the presence of isooctanol using a constant interfacial cell with laminar flow, Sep. Purif. Technol. 71 (1) (2010) 50-55. [19] J.H. Lü, J.D. Liu, Y.J. Sun, C.L. Li, Kinetics of forward extraction of boric acid from salt lake brine by 2-ethyl-1,3-hexanediol in toluene using single drop technique, Chin. J. Chem. Eng. 22 (5) (2014) 496-502. [20] X.Q. He, K. Huang, P.H. Yu, C. Zhang, K. Xie, P.F. Li, J.Wang, Z.T. An, H.Z. Liu, Liquid- liquid-liquid three phase extraction apparatus: operation strategy and influences on mass transfer efficiency, Chin. J. Chem. Eng. 20 (1) (2012) 27-35. [21] Z. Zheng, J. Lu, D.Q. Li, G.X. Ma, The kinetics study in liquid-liquid systems with constant interfacial area cell with laminar flow, Chem. Eng. Sci. 53 (13) (1998) 2327-2333. [22] D.B. Wu, X.L. Wang, D.Q. Li, Extraction kinetics of Sc(Ⅲ), Y(Ⅲ), La(Ⅲ) and Gd(Ⅲ) from chloride medium by Cyanex 302 in heptane using the constant interfacial cell with laminar flow, Chem. Eng. Process. 46 (1) (2007) 17-24. [23] J.M. Zhao, W. Li, D.Q. Li, Y. Xiong, Kinetics of cerium(IV) extraction with DEHEHP from HNO3-HF medium using a constant interfacial cell with laminar flow, Ion Exch. Solvent Extr. 24 (2) (2006) 165-176. [24] Y. Xiong, Z.N. Lou, S. Yue, J.J. Song, W.J. Shan, G.X. Han, Kinetics and mechanism of Re(VII) extraction with mixtures of tri-alkylamine and tri-n-butylphosphate, Hydrometallurgy 100 (3-4) (2010) 110-115. [25] D.B. Wu, Y. Xiong, D.Q. Li, Mass transfer kinetics of yttrium(Ⅲ) using a constant interfacial cell with laminar flow. Part I. extraction with cyanex 302, Hydrometallurgy 82 (3-4) (2006) 176-183. [26] J.J. Liu, Y.L. Wang, D.Q. Li, Extraction kinetics of thorium(IV) with primary amine N1923 in sulfate media using a constant interfacial cell with laminar flow, Sep. Sci. Technol. 43 (2) (2008) 431-445. [27] J.J. Liu, Y.L. Wang, D.Q. Li, Extraction kinetics of cerium(IV) from sulfuric acid medium by the primary amine N1923 using a constant interfacial area cell with laminar flow, J. Chem. Technol. Biotechnol. 82 (10) (2007) 949-955. [28] W.P. Liao, G.H. Yu, S.T. Yue, D.Q. Li, Kinetics of cerium(IV) extraction from H2SO4-HF medium with cyanex 923, Talanta 56 (4) (2002) 613-618. [29] P.R. Danesi, G.F. Vandegrift, Kinetics and mechanism of the interfacial mass transfer of europium(3+) and americium(3+) in the system bis(2-ethylhexyl)-phosphaten- dodecane-sodium chloride-hydro chloric acid-water, J. Phys. Chem. 85 (24) (1981) 3646-3651. |