[1] H. Lander, A.C. Nixon, Endothermic fuels for hypersonic vehicles, J. Aircr. 8 (1971) 200-207. [2] H. Huang, L.J. Spadaccini, D.R. Sobel, Fuel-cooled thermal management for advanced aeroengines, J. Eng. Gas Turbines Power 126 (2004) 284-293. [3] A. Shah, I.R. Chughtai,M. Hameed, Numerical simulation of direct-contact condensation from a supersonic steam jet in subcooled water, Chin. J. Chem. Eng. 18 (4) (2010) 577-587. [4] Y.X. Hua, Y.Z. Wang, H. Meng, A numerical study of supercritical forced convective heat transfer of n-heptane inside a horizontal miniature tube, J. Supercrit. Fluids 52 (2010) 36-46. [5] F. Zhong, X. Fan, G. Yu, J. Li, C.J. Sung, Heat transfer of aviation kerosene at supercritical conditions, J. Thermophys. Heat Transf. 23 (3) (2009) 543-550. [6] B.S. Shiralkar, P. Griffith, Deterioration in Heat Transfer to Fluids at Supercritical Pressure and High Heat Fluxes, 91, M.I.T. Engineering Projects Laboratory, Cambridge, Mass, 1969, pp. 27-36. [7] B. Shiralkar, P. Griffith, The effect of swirl, inlet conditions, flow direction, and tube diameter on the heat transfer to fluids at supercritical pressure, J. Heat Transf. 92 (1970) 465. [8] S.M. Liao, T.S. Zhao, An experimental investigation of convection heat transfer to supercritical carbon dioxide in miniature tubes, Int. J. Heat Mass Transfer 45 (25) (2002) 5025-5034. [9] P.X. Jiang, Y. Zhang, R.F. Shi, Experimental and numerical investigation of convection heat transfer of CO2 at supercritical pressures in a verticalmini-tube, Int. J. HeatMass Transfer 51 (2008) 3052-3056. [10] L.ü. Huisheng, R.E.N. Miaomiao, Z.H.A.N.G. Minhua, C.H.E.N. Ying, Pretreatment of corn stover using supercritical CO2 with water-ethanol as co-solvent, Chin. J. Chem. Eng. 21 (5) (2013) 551-557. [11] Claudio A. Faúndez, Felipe A. Quiero, José O. Valderrama, Thermodynamic consistency test for binary gas + water equilibrium data at low and high pressures, Chin. J. Chem. Eng. 21 (10) (2013) 1172-1181. [12] B. Stiegemeier, A Thermal Stability and Heat Transfer Investigation of Five Hydrocarbon Fuels: JP-7, JP-8, JP-8+ 100, JP-10, and RP-1PhD thesis University of Kansas, USA, 2002. [13] Z.H. Hu, T.K. Chen, Y.S. Luo, J.X. Zheng, M. Tang, Heat transfer characteristics of kerosene at supercritical pressure, J. Xi'an Jiaotong Univ. 33 (9) (1999) 62-65 (in Chinese). [14] F.Q. Zhong, X.J. Fan, G. Yu, J.G. Li, Thermal cracking of aviation kerosene for scramjet applications, Sci. China Ser. E Technol. Sci. 52 (2009) 2644-2652. [15] R.P. Bringer, J.M. Smith, Heat transfer in the critical region, AIChE J. 3 (1) (1957) 49-55. [16] M.W. Shitsman, Heat transfer to supercritical helium, carbon dioxide, and water: Analysis of thermodynamic and transport properties and experimental data, Cryogenics 14 (2) (1974) 77-83. [17] G. Domin, “Wärmeübergang in kritischen und überkritischen Bereichen von Wasser”, Rohren, Brennstoff-Warme-Fraft (BWK) 15 (11) (1963) 527-532. [18] V. Yeroshenko, L. Yaskin, Applicability of various correlations for the prediction of turbulent heat transfer of supercritical helium, Cryogenics 21 (2) (1981) 94-96. [19] V.A. Bogachev, V.M. Eroshenko, L.A. Yaskin, Relative increase in heat transfer in viscous-inertial regimes of flow of helium at supercritical pressure in a heated tube, J. Eng. Phys. 44 (4) (1983) 363-366. [20] P.L. Kirillov, Yu.S. Yur'ev, V.P. Bobkov, Handbook of Thermal-hydraulics Calculations, Energoa-tomizdat Publishing House, Moscow, Russia, 1990. 66-67 (130-132, in Russian). [21] K. Kitoh, S. Koshizuka, Y. Oka, Refinement of transient criteria and safety analysis for a high-temperature reactor cooled by supercritical water, Nucl. Technol. 135 (3) (2001) 252-264. [22] J. Jackson, Consideration of the heat transfer properties of supercritical pressure water in connection with the cooling of advanced nuclear reactors, Proceed. 13th Pacific Basin Nuclear Conference, Shenzhen, China, 2002. [23] K. Liang, B. Yang, Z. Zhang, Investigation of heat transfer and coking characteristics of hydrocarbon fuels, J. Propuls. Power 14 (1998) 789-796. [24] I.L. Pioro, H.F. Khartabil, B.D. Romney, Heat transfer to supercritical fluids flowing in channel—empirical correlations (survey), Nucl. Eng. Des. 230 (1-3) (2004) 69-91. [25] X.F. Li, X.L. Huai, J. Cai, F.Q. Zhong, X.J. Fan, Z.X. Guo, Convective heat transfer characteristics of China RP-3 aviation kerosene at supercritical pressure, Appl. Therm. Eng. 31 (14) (2011) 2360-2366. [26] X.F. Li, F.Q. Zhong, X.J. Fan, X.L. Huai, J. Cai, Study of turbulent heat transfer of aviation kerosene flows in a curved pipe at supercritical pressure, Appl. Therm. Eng. 30 (13) (2010) 1845-1851. [27] J.F. Ely, H. Hanley, Prediction of transport properties. 1. Viscosity of fluids and mixtures, Ind. Eng. Chem. Fundam. 20 (4) (1981) 323-332. [28] H. Meng, V. Yang, A unified treatment of general fluid thermodynamics and its application to a preconditioning scheme, J. Comput. Phys. 189 (1) (2003) 277-304. [29] X. Cheng, T. Schulenberg, Heat transfer at supercritical pressures: literature review and application to an HPLWR, Scientific Report FZKA6609, Forschungszentrum Karlsruhe, 2001. [30] M. Bazargan, D. Fraser, V. Chatoorgan, Effect of buoyancy on heat transfer in supercritical water flow in a horizontal round tube, J. Heat Transf. 127 (8) (2005) 897-902. [31] P.X. Jiang, Y. Zhang, Y.J. Xu, R.F. Shi, Experimental and numerical investigation of convection heat transfer of CO2 at supercritical pressures in a vertical tube at low Reynolds numbers, Int. J. Therm. Sci. 47 (8) (2008) 998-1011. [32] K. Yamagata, K. Nishikawa, S. Hasegawa, T. Fujii, S. Yoshida, Forced convective heat transfer to supercritical water flowing in tubes, Int. J. Heat Mass Transfer 15 (12) (1972) 2575-2593. [33] V. Protopopov, Generalizing relations for the local heat-transfer coefficients in turbulent flows of water and carbon dioxide at supercritical pressure in a uniformly heated circular tube, High Temp. Sci. 15 (4) (1977) 815-821. [34] V.N. Popov, E.P. Valueva, Numerical modeling of mixed turbulent convection of helium at supercritical parameters of state in a vertical tube, Therm. Eng. 35 (7) (1988) 399-404. [35] A. Polyakov, Heat transfer under supercritical pressures, Adv. Heat Transf. 21 (1991) 1-53. [36] V. Kurganov, A. Kaptilnyi, Flow structure and turbulent transport of a supercritical pressure fluid in a vertical heated tube under the conditions of mixed convection. Experimental data, Int. J. Heat Mass Transfer 36 (13) (1993) 3383-3392. [37] B. Zhang, C.-B. Zhang, H.-W. Deng, G.-Q. Xu, K. Zhu, Heat transfer characteristics of hydrocarbon fuel at supercritical pressure in vertical circular tubes, J. Aerosp. Power 27 (3) (2012) 595-603 (in Chinese). [38] H. Deng, K. Zhu, G. Xu, Z. Tao, J. Sun, Heat transfer characteristics of RP-3 kerosene at supercritical pressure in a vertical circular tube, J. Enhanc. Heat Transf. 19 (5) (2012) 409-421. |