Chin.J.Chem.Eng. ›› 2016, Vol. 24 ›› Issue (4): 521-528.DOI: 10.1016/j.cjche.2015.11.029
Previous Articles Next Articles
Carolyn Palma1, Lucia Lloret1, Antonio Puen1, Maira Tobar1, Elsa Contreras2
Received:
2015-07-24
Revised:
2015-10-20
Online:
2016-05-27
Published:
2016-04-28
Contact:
Carolyn Palma
Carolyn Palma1, Lucia Lloret1, Antonio Puen1, Maira Tobar1, Elsa Contreras2
通讯作者:
Carolyn Palma
Carolyn Palma, Lucia Lloret, Antonio Puen, Maira Tobar, Elsa Contreras. Production of carbonaceous material from avocado peel for its application as alternative adsorbent for dyes removal[J]. Chin.J.Chem.Eng., 2016, 24(4): 521-528.
Carolyn Palma, Lucia Lloret, Antonio Puen, Maira Tobar, Elsa Contreras. Production of carbonaceous material from avocado peel for its application as alternative adsorbent for dyes removal[J]. Chinese Journal of Chemical Engineering, 2016, 24(4): 521-528.
[1] I.M. Banat, P. Nigam, D. Singh, R. Marchant, Microbial decolorization of textile dyes containing effluents: A review, Bioresour. Technol. 58(1996) 217-227. [2] I.A. ?engil, M. Özacar, The decolorization of C.I. Reactive Black 5 in aqueous solution by electrocoagulation using sacrificial iron electrodes, J. Hazard. Mater. 161(2009) 1369-1376. [3] M. Ali, T.R. Sreekrishnan, Aquatic toxicity from pulp and paper mill effluents: A review, Adv. Environ. Res. 5(2004) 175-196. [4] M.C. Hasegawa, A.M. Barbosa, K. Takashima, Biotreatment of industrial tannery wastewater using Botryosphaeria rhodina, J. Serb. Chem. Soc. 76(2011) 439-446. [5] S.G. Schrank, H.J. José, R.F.P.M. Moreira, H.Fr. Schröder, Elucidation of the behavior of tannery wastewater under advanced oxidation conditions, Chemosphere 56(2004) 411-423. [6] R. Agarwal, S. Lata, M. Gupta, P. Singh, Removal of melanoidin present in distillery effluent as a major colorant: A review, J. Environ. Biol. 31(2010) 521-528. [7] C. Raghukumar, C. Mohandass, S. Kamat, M.S. Shailaja, Simultaneous detoxification and decolorization of molasses spent wash by the immobilized white-rot fungus Flavodon flavus isolated from a marine habitat, Enzym. Microb. Technol. 35(2004) 197-202. [8] J.W. Choi, H.K. Song,W. Lee, K.K. Koo, C. Han, B.K. Na, Reduction of COD and color of acid and reactive dyestuff wastewater using ozone, Korean J. Chem. Eng. 21(2004) 398-403. [9] M.R. Kumar, K. Saravanan, R. Shanmugan, Recycling of woven fabric dyeing wastewater practiced in Perundurai common effluent treatment plant, J. Mod. Appl. Sci. 3(2009) 146-160. [10] T. Robinson, G. McMullan, R. Marchant, P. Nigam, Remediation of dyes in textile effluent: A critical review on current treatment technologies with proposed alternative, Bioresour. Technol. 77(2001) 247-255. [11] N. Daneshvar, H. Ashassi-Sorkhabi, A. Tizpar, Decolorization of orange II by electrocoagulation method, Sep. Purif. Technol. 31(2003) 153-162. [12] K. Kadirvelu, M. Kavipriya, C. Karthika, M. Radhika, N. Vennilamani, S. Pattabhi, Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dyes and metal ions from aqueous solutions, Bioresour. Technol. 87(2003) 129-132. [13] C. Novotny, N. Dias, A. Kapanen, K. Malachova, M. Vandrovcova, M. Itavaara, Comparative use of bacterial, algal and protozoan tests to study toxicity of azo and anthraquinone dyes, Chemosphere 63(2006) 1436-1442. [14] E. Forgacs, T. Cserháti, G. Oros, Removal of synthetic dyes from wastewaters: A review, Environ. Int. 30(2004) 953-971. [15] G.M. Shaul, T.J. Holdsworth, C.R. Demmpsey, K.A. Dostal, Fate of water soluble azo dyes in the activated sludge process, Chemosphere 22(1991) 107-119. [16] I. Mielgo, M.T. Moreira, G. Feijoo, J.M. Lema, A packed-bed fungal bioreactor for the continuous decolourisation of azo-dyes (Orange II), J. Biotechnol. 89(2001) 99-106. [17] C. Palma, J. Urra, C. Vásquez, E. Contreras, Detoxification of azo dyes mediated by cell-free supernatant culture with MnP activity: Effect of Mn+2 concentration and H2O2 dose, Biotechnol. Prog. 28(2012) 114-120. [18] S.M. Tsui, W. Chu, Photocatalytic degradation of dye pollutants in the presence of acetone, Water Sci. Technol. 44(2001) 173-180. [19] J.N. Wu, T.N. Wang, Effects of some water-quality and operating parameters on the decolorization of reactive dye solutions by ozone, J. Environ. Sci. Health A 36(2001) 1335-1347. [20] J.H. Park, E. Choi, K.I. Gil, Removal of reactive dye using UV/TiO2 in circular type reactor, J. Environ. Sci. Health A 38(2003) 1389-1399. [21] C. Palma, A. Carvajal, C. Vásquez, E. Contreras,Wastewater treatment for removal of recalcitrant compounds: A hybrid process for decolorization and biodegradation of dyes, Chin. J. Chem. Eng. 19(2011) 621-625. [22] E. Contreras, L. Sepulveda, C. Palma, Valorization of agro-industrial wastes as biosorbent for the removal of textile dyes from aqueous solutions, Int. J. Chem. Eng. 679352(2012). [23] L.A. Sepúlveda, F.A. Cuevas, E.G. Contreras, Valorization of agricultural wastes as dye adsorbents: Characterization and adsorption isotherms, Environ. Technol. (2015) http://dx.doi.org/10.1080/09593330.2015.1016119. [24] M.C. Baquero, L. Giraldo, J.C. Moreno, F. Suárez-García, A. Martínez-Alonso, J.M.D. Tascón, Activated carbons by pyrolysis of coffee bean husks in presence of phosphoric acid, J. Anal. Appl. Pyrolysis 70(2003) 779-784. [25] R.L. Tseng, S.K. Tseng, Pore structure and adsorption performance of the KOHactivated carbons prepared from corncob, J. Colloid Interface Sci. 287(2005) 428-437. [26] J.E. Vargas, L. Giraldo, J.C. Moreno-Piraján, Preparation of activated carbons from seeds of Macuna mutisiana by physical activation with steam, J. Anal. Appl. Pyrolysis 89(2010) 307-312. [27] O. Ioannidou, A. Zabaniotou, Agricultural residues as precursors for activated carbon production-A review, Renew. Sust. Energ. Rev. 11(2007) 1966-2005. [28] A.E. Putun, N. Ozbay, E.P. Onal, E. Putun, Fixed-bed pyrolysis of cotton stalk for liquid and solid products, Fuel Process. Technol. 86(2005) 1207-1219. [29] M.E. González, M. Cea, N. Sangaletti, A. González, C. Toro, M.C. Díez, N. Moreno, X. Querol, R. Navia, Biochar derived from agricultural and forestry residual biomass: Characterization and potential application for enzymes immobilization, J. Biobased Mater. Bioenergy 7(2013) 724-732. [30] M.P. Elizalde-González, J.Mattusch, A.A. Peláez-Cid, R.Wennrich, Characterization of adsorbent materials prepared from avocado kernel seeds: Natural, activated and carbonized forms, J. Anal. Appl. Pyrolysis 78(2007) 185-193. [31] B.S. Girgis, S.S. Yunis, A.M. Soliman, Characterization of activated carbon from peanut hulls in relation to condition of preparation, Mater. Lett. 57(2002) 164-172. [32] M.P. Elizalde-González, V. Hernández-Montoya, Fruit seeds as adsorbents and precursors of carbon for the removal of anthraquinone dyes, Int. J. Chem. Eng. 1(2008) 243-253. [33] M.P. Elizalde-González, V. Hernández-Montoya, Guava seed as adsorbent and as precursor of carbon for the adsorption of acid dyes, Bioresour. Technol. 100(2009) 2111-2117. [34] M.P. Elizalde-González, V. Hernández-Montoya, Removal of acid orange 7 by guava seed carbon: A four parameter optimization study, J. Hazard. Mater. 168(2009) 515-522. [35] A.S. Franca, L.S. Oliveira,M.E. Ferreira, Kinetics and equilibriumstudies of methylene blue adsorption by spent coffee grounds, Desalination 249(2009) 267-272. [36] B.H. Hameed, D.K.Mahmoud, A.L. Ahmad, Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent: Coconut (Cocos nucifera) bunch waste, J. Hazard. Mater. 158(2008) 65-72. [37] S. Patil, S. Renukdas, N. Patel, Removal of methylene blue, a basic dye from aqueous solutions by adsorption using teak tree (Tectona grandis) bark powder, Int. J. Environ. Sci. 1(2011) 711-726. [38] M.P. Dominguez, K. Araus, P. Bonert, F. Sánchez, G. San Miguel, M. Toledo, The avocado and its wastes: An approach of fuel potential/application, Springer, Berlin, 2014. [39] M.J.Werman, I. Neeman, Avocado oil production and chemical characteristics, J. Am. Oil Chem. Soc. 64(1987) 229-232. [40] D.A. Jacobo-Velázquez, C. Hernández-Brenes, Sensory shelf-life limiting factor of high hydrostatic pressure processed avocado paste, J. Food Sci. 76(2011) S388-S395. [41] G.A. Ramtahal, J.O. Akingbala, G.S.H. Baccus-Taylor, Laboratory preparation and evaluation of Pollock variety avocado (Persea americana Mill) guacamole, J. Sci. Food Agric. 87(2007) 2068-2074. [42] F.S. Gómez, S.P. Sánchez, M.G.G. Iradi, N.A.M. Azman, M.P. Almajano, Avocado seeds: Extraction optimization and possible use as antioxidant in food, Antioxidants 3(2014) 439-454. [43] Elizalde-González, M.P.,Dávila-Jiménez,M.M., Davila,O.O., "Process for obtaining an adsorbent from avocado waste and use of the adsorbent", U.S. Pat. US20130306564A1(2013). [44] A.A. Peláez-Cid, M.M.M. Teutli-León, Lignocellulosic precursors used in the elaboration of activated carbon, InTech, Croatia, 2012. [45] C. Palma, E. Contreras, J. Urra, M.J. Martínez, Eco-friendly technologies based on banana peel use for the decolourization of the dyeing process wastewater, Waste Biomass Valoriz. 2(2011) 77-86. [46] M.S. Roriz, J.F. Osma, J.A. Teixeira, S.R. Couto, Application of response surface methodology approach to optimize Reactive Black 5 decolourization by crude laccase from Trametes pubescens, J. Hazard. Mater. 169(2009) 691-696. [47] H. Ceylan, S. Kubilay, N. Aktas, N. Sahiner, An approach for prediction of optimum reaction conditions for laccase-catalyzed bio-transformation of 1-naphthol by response surface methodology (RSM), Bioresour. Technol. 99(2008) 2025-2031. [48] J. Lehmann, M.C. Rillig, J. Thies, C. Masiello, W.C. Howkaday, D. Crowley, Biochar effects on soil biota-A review, Soil Biol. Biochem. 43(2011) 1812-1836. [49] J.M. Novak, I. Lima, B. Xing, J.W. Gaskin, C. Steiner, K.C. Das, M. Ahmedna, D. Rehrah, D.W. Watts, W.J. Busscher, H. Schomberg, Characterization of designer biochar produced at different temperatures and their effects on loamy sand, Ann. Environ. Sci. 3(2009) 195-206. [50] R. Aguado, M. Olazar, A. Barona, J. Bilbao, Char-formation kinetics in the pyrolysis of sawdust in a conical spouted bed reactor, J. Chem. Technol. Biotechnol. 75(2010) 583-588. [51] X.Wang, D. Li,W. Li, J. Peng, H. Xia, L. Zhang, S. Guo, G. Chen, Optimization of mesoporous activated carbon fromcoconut shells by chemical activationwith phosphoric acid, Bioresources 8(2013) 6184-6195. [52] IUPAC,Manual of symbols and terminology of colloid surface, Butterworths, London, 1982. [53] H. Marsh, F. Rodriguez-Reinoso, Activated carbon, Elsevier Science and Technology Books, Amsterdam, 2006. [54] G. Crini, H.N. Peindy, Adsorption of CI basic blue 9 on cyclodextrin-based material containing carboxylic groups, Dyes Pigments 70(2005) 204-211. [55] R. Dhodapkar, P. Borde, T. Nandy, Super absorbent polymers in environmental remediation, Global NEST J. 11(2009) 223-234. [56] M.A. Tshabalala, Determination of the acid-base characteristics of lignocellulosic surfaces by inverse gas chromatography, J. Appl. Polym. Sci. 65(1997) 1013-1020. [57] X. Li, Y. Tang, X. Cao, D. Lu, F. Luo, W. Shao, Preparation and evaluation of orange peel cellulose adsorbents for effective removal of cadmium, zinc, cobalt and nickel, Colloids Surf. A 317(2008) 512-521. [58] T. Negesse, Nutrient composition, volatile fatty acids production, digestible organic matter and anti-nutritional factors of some agro-industrial by-products of Ethiopia, SINET Ethiop. J. Sci. 32(2009) 149-156. [59] M.F.R. Pereira, S.F. Soares, J.J.M. Órfão, J.L. Figueiredo, Adsorption of dyes on activated carbons: Influence of surface chemical groups, Carbon 41(2003) 811-821. [60] M.M. Dávila-Jiménez, M.O. Elizalde-González, V. Hernández-Montoya, Performance ofmango seed adsorbents in the adsorption of anthraquinone and azo dyes in single and binary aqueous solutions, Bioresour. Technol. 100(2009) 6199-6206. [61] A. Demirbas, Agricultural based activated carbons for the removal of dyes from aqueous solution: A review, J. Hazard. Mater. 167(2009) 1-9. [62] N.K. Amin, Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: Adsorption equilibrium and kinetics, J. Hazard. Mater. 165(2009) 52-65. [63] E. Contreras, B. Martínez, L. Sepúlveda, C. Palma, Kinetics of basic dye adsorption onto Sphagnum magellanicum peat, Adsorpt. Sci. Technol. 25(2007) 637-646. [64] Y.S. Ho, G. McKay, Kinetics models for the sorption of dye from aqueous solution by wood, Trans. IChemE Part B 76(1998) 183-191. [65] F.A. Batzias, D.K. Sidiras, Simulation of dye adsorption by beech sawdust as affected by pH, J. Hazard. Mater. 141(2007) 668-679. [66] G. Sun, X. Xu, Sunflower stalks as adsorbents for color removal from textile wastewater, Ind. Eng. Chem. Res. 36(1997) 808-812. [67] Gupta, V.K. Suhas, Application of low-cost adsorbents for dye removal-A review, J. Environ. Manag. 90(2009) 2313-2342. [68] I. Ali, V.K. Gupta, Advances in water treatment by adsorption technology, Nat. Protoc. 1(2007) 2661-2667. [69] Z.Z. Chowdhury, S.M. Zain, R.A. Khan, K. Khalid, Batch and fixed bed adsorption studies of lead(II) cations fromaqueous solutions onto granular activated carbon derived from Mangostana garcinia shell, Bioresources 7(2012) 2895-2915. |
[1] | Yingli Li, Zhishuncheng Li, Guangfei Qu, Rui Li, Shuaiyu Liang, Junhong Zhou, Wei Ji, Huiming Tang. Mechanism, behaviour and application of iron nitrate modified carbon nanotube composites for the adsorption of arsenic in aqueous solutions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 26-36. |
[2] | Chuang Liang, Zhihao Liu, Baochang Sun, Haikui Zou, Guangwen Chu. Improvement in discharge characteristics and energy yield of ozone generation via configuration optimization of a coaxial dielectric barrier discharge reactor [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 61-68. |
[3] | Jing Huang, Honghui Cai, Qian Zhao, Yunpeng Zhou, Haibo Liu, Jing Wang. Dual-functional pyrene implemented mesoporous silicon material used for the detection and adsorption of metal ions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 108-117. |
[4] | Lingli Chen, Yueting Shi, Sijun Xu, Junle Xiong, Fang Gao, Shengtao Zhang, Hongru Li. Enhanced adsorption of target branched compounds including antibiotic norfloxacin frameworks on mild steel surface for efficient protection: An experimental and molecular modelling study [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 212-227. |
[5] | Alexander Nti Kani, Evans Dovi, Aaron Albert Aryee, Runping Han, Zhaohui Li, Lingbo Qu. Mechanisms and reusability potentials of zirconium-polyaziridine-engineered tiger nut residue towards anionic pollutants [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 275-292. |
[6] | Yuan Liu, Hanting Xiong, Jingwen Chen, Shixia Chen, Zhenyu Zhou, Zheling Zeng, Shuguang Deng, Jun Wang. One-step ethylene separation from ternary C2 hydrocarbon mixture with a robust zirconium metal-organic framework [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 9-15. |
[7] | Hui Jiang, Zijian Zhao, Ning Yu, Yi Qin, Zhengwei Luo, Wenhua Geng, Jianliang Zhu. Synthesis, characterization, and performance comparison of boron using adsorbents based on N-methyl-D-glucosamine [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 16-31. |
[8] | Yaran Bu, Changchun Wu, Lili Zuo, Qian Chen. The calculation and optimal allocation of transmission capacity in natural gas networks with MINLP models [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 251-261. |
[9] | Runze Chen, Yuran Chen, Xuemin Liang, Yapeng Kong, Yangyang Fan, Quan Liu, Zhenyu Yang, Feiying Tang, Johnny Muya Chabu, Maru Dessie Walle, Liqiang Wang. Oxidative exfoliation of spent cathode carbon: A two-in-one strategy for its decontamination and high-valued application [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 262-269. |
[10] | Shanghong Ma, Haitao Zhang, Jianbo Qu, Xiuzhong Zhu, Qingfei Hu, Jianyong Wang, Peng Ye, Futao Sai, Shiwei Chen. Preparation of waterborne polyurethane/β-cyclodextrin composite nanosponge by ion condensation method and its application in removing of dyes from wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 124-136. |
[11] | Danlei Chen, Yiqing Luo, Xigang Yuan. Cascade refrigeration system synthesis based on hybrid simulated annealing and particle swarm optimization algorithm [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 244-255. |
[12] | Yueting Shi, Junhai Zhao, Lingli Chen, Hongru Li, Shengtao Zhang, Fang Gao. Double open mouse-like terpyridine parts based amphiphilic ionic molecules displaying strengthened chemical adsorption for anticorrosion of copper in sulfuric acid solution [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 233-246. |
[13] | Jian Wang, Yuanhui Shen, Donghui Zhang, Zhongli Tang, Wenbin Li. Integrated vacuum pressure swing adsorption and Rectisol process for CO2 capture from underground coal gasification syngas [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 265-279. |
[14] | Yujia Cui, Zhiqiang Tan, Yanan Wang, Shuxian Shi, Xiaonong Chen. One-step crosslinking preparation of tannic acid particles for the adsorption and separation of cationic dyes [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 309-318. |
[15] | Shanshan Mao, Tao Shen, Qing Zhao, Tong Han, Fan Ding, Xin Jin, Manglai Gao. Selective capture of silver ions from aqueous solution by series of azole derivatives-functionalized silica nanosheets [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 319-328. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 460
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 2506
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||