[1] D. Bustan, N. Pariz, S.K. Hosseini Sani, Robust fault-tolerant tracking control design for spacecraft under control input saturation, ISA Trans. 53(2014) 1073-1080. [2] S. Ahmet, J. Sarangapani, S. Can, Mahalanobis-Taguchi system as a multi-sensor based decision making prognostics tool for centrifugal pump failures, IEEE Trans. Reliab. 60(2011) 864-8708. [3] J. Chen, H. Sheng*, C. Li, Z. Xiong, PSTG-based multi-label optimization for multitracking, Comput. Vis. Image Underst. 144(2016) 217-227. [4] K. Ashwani, A.P. Singh, Fuzzy classifier for fault diagnosis in analog electronic circuits, ISA Trans. 52(2013) 816-824. [5] B. Chen, P.C.Matthews, P.J. Tavner,Wind turbine pitch faults prognosis using A-priori knowledge-based ANFIS, Expert Syst. Appl. 40(2013) 6863-6876. [6] M. Basseville, On-board component fault detection and isolation using the statistical local approach, Automatica 34(1998) 1391-1415. [7] H. Chang, J.H. Chen, Y.P. Ho, Batch process monitoring by wavelet transform based fractal encoding, Ind. Eng. Chem. Res. 25(2006) 3864-3879. [8] L. Zhang, Fault prognostic algorithm based on multivariate relevance vector machine and time series iterative prediction, Procedia Eng. 29(2012) 678-686. [9] G. Li, S.J. Qin, Y.D. Ji, D.H. Zhou, Reconstruction based fault prognosis for continuous processes, Control. Eng. Pract. 18(2010) 1211-1219. [10] T. Jo, VTG schemes for using back propagation for multivariate time series prediction, Appl. Soft Comput. 13(2013) 2692-2702. [11] C.H. Gao, Z.M. Zhou, J.M. Chen, Assessing the predictability for blast furnace system through nonlinear time series analysis, Ind. Eng. Chem. Res. 47(2008) 3037-3045. [12] M.S. Roulston, Estimating the errors on measured entropy and mutual information, Phys. D 125(1999) 285-294. [13] G. Chen, L. Xie, J.S. Zeng, J. Chu, Y. Gu, Detecting model-plant mismatch of nonlinear multivariate systems using mutual information, Ind. Eng. Chem. Res. 52(2013) 1927-1938. [14] B. Sadeghi, HM. A BP-neural network predictor model for plastic injection molding process, J. Mater. Process. Technol. 103(2000) 411-416. [15] W.X. Zhao, D.Z. Chen, S.X. Hu, Detection of outlier and a robust BP algorithm against outlier, Comput. Chem. Eng. 28(2004) 1403-1408. [16] J.F. Böhme, Time delay estimation by cross-covariance maximization of quadrature sampled narrowband signals, AEU Int. J. Electron. Commun. 58(2004) 13-20. [17] S.H. Jin, P. Lin, M. Hallett, Linear and nonlinear information flow based on timedelayed mutual information method and its application to corticomuscular interaction, Clin. Neurophysiol. 121(2010) 392-401. [18] W.D. Penny, Comparing dynamic causal models using AIC, BIC and free energy, Neuroimage 59(2012) 319-330. [19] M.A. Kramer, Nonlinear principal component analysis using auto-associative neural networks, AIChE J. 37(1991) 233-243. [20] J.Wang, H.T.Wei, L.L. Cao, Q.B. Jin, Soft-transition sub-PCA fault monitoring of batch process, Ind. Eng. Chem. Res. 52(2013) 9858-9888. [21] J.M. Lee, C.K. Yoo, S.W. Choi, P.A. Vanrolleghem, I.B. Lee,Nonlinear processmonitoring using kernel principal component analysis, Chem. Eng. Sci. 59(2004) 223-234. [22] J.M. Lee, C. Yoo, I.B. Lee, Fault detection of batch processes using multiway kernel principal component analysis, Comput. Chem. Eng. 28(2004) 1837-1847. [23] Z.Q. Ge, C.J. Yang, Z.H. Song, Improved kernel PCA-based monitoring approach for nonlinear processes, Chem. Eng. Sci. 64(2009) 2245-2255. [24] U. Kruger, S. Kumar, T. Littler, Improved principal component monitoring using the local approach, Automatica 43(2007) 1532-1542. [25] Z.Q. Ge, L. Xie, U. Kruger, Z.H. Song, Local ICA formultivariate statistical fault diagnosis in systems with unknown signal and error distributions, AIChE J. 58(2012) 2357-2372. [26] A. Kraskov, H. Stögbauer, P. Grassberger, Estimatingmutual information, Phys. Rev. E 69(066138) (2004). [27] S. Markus, R. Haber, U. Schmitz, Source identification of plant-wide faults based on k nearest neighbor time delay estimation, J. Process Control 22(2012) 583-598. [28] Y. Shi, W.Q. Meeker, Bayesian methods for accelerated destructive degradation test planning, IEEE Trans. Reliab. 61(2012) 245-253. [29] F.A. Carroll, J.M. Godinho, F.H. Quina, Development of a simple method to predict boiling points and flash points of acyclic alkenes, Ind. Eng. Chem. Res. 50(2011) 14221-14225. [30] A. Singhal, D.E. Seborg, Evaluation of a pattern matching method for the Tennessee Eastman challenge process, J. Process Control 16(2006) 601-613. [31] Y. Shen, S.X. Ding, A. Haghani, H.Y. Hao, P. Zhang, A comparison study of basic datadriven fault diagnosis and processmonitoringmethods on the benchmark Tennessee Eastman process, J. Process Control 22(2012) 1567-1581. [32] R. Eslamloueyan, Designing a hierarchical neural network based on fuzzy clustering for fault diagnosis of the Tennessee-Eastman process, Appl. Soft Comput. 11(2011) 1407-1415. |