›› 2017, Vol. 25 ›› Issue (7): 924-930.DOI: 10.1016/j.cjche.2016.12.006
• Separation Science and Engineering • Previous Articles Next Articles
Akbar Soliemanzadeh, Majid Fekri
Received:
2016-05-17
Revised:
2016-12-27
Online:
2017-08-17
Published:
2017-07-28
Akbar Soliemanzadeh, Majid Fekri
通讯作者:
Akbar Soliemanzadeh,E-mail address:asoliemanzadeh@yahoo.com
Akbar Soliemanzadeh, Majid Fekri. Synthesis of clay-supported nanoscale zero-valent iron using green tea extract for the removal of phosphorus from aqueous solutions[J]. , 2017, 25(7): 924-930.
Akbar Soliemanzadeh, Majid Fekri. Synthesis of clay-supported nanoscale zero-valent iron using green tea extract for the removal of phosphorus from aqueous solutions[J]. , 2017, 25(7): 924-930.
[1] M.A. Tabatabai, D.L. Sparks, L. Al-Amoodi, W. Dick, Chemical Processes in Soils, Soil Science Society of America Inc., 2005 [2] M. Kagami, Y. Hirose, H. Ogura, Phosphorus and nitrogen limitation of phytoplankton growth in eutrophic Lake Inba, Japan, Limnology 14(2013) 51-58. [3] H. Xu, H.W. Paerl, B. Qin, G. Zhu, G. Gao, Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China, Limnol. Oceanogr. 55(2010) 420. [4] H. Liu, T. Chen, X. Zou, Q. Xie, C. Qing, D. Chen, R.L. Frost, Removal of phosphorus using NZVI derived from reducing natural goethite, Chem. Eng. J. 234(2013) 80-87. [5] F. Liu, J. Yang, J. Zuo, D. Ma, L. Gan, B. Xie, P. Wang, B. Yang, Graphene-supported nanoscale zero-valent iron:Removal of phosphorus from aqueous solution and mechanistic study, J. Environ. Sci. 26(2014) 1751-1762. [6] T. Almeelbi, A. Bezbaruah, Aqueous phosphate removal using nanoscale zero-valent iron, J. Nanopart. Res. 14(2012) 1-14. [7] S. Machado, S. Pinto, J. Grosso, H. Nouws, J.T. Albergaria, C. Delerue-Matos, Green production of zero-valent iron nanoparticles using tree leaf extracts, Sci. Total Environ. 445(2013) 1-8. [8] L. Huang, X. Weng, Z. Chen, M. Megharaj, R. Naidu, Synthesis of iron-based nanoparticles using oolong tea extract for the degradation of malachite green, Spectrochim. Acta A Mol. Biomol. Spectrosc. 117(2014) 801-804. [9] M.N. Nadagouda, A.B. Castle, R.C. Murdock, S.M. Hussain, R.S. Varma, In vitro biocompatibility of nanoscale zerovalent iron particles (NZVI) synthesized using tea polyphenols, Green Chem. 12(2010) 114-122. [10] L. Huang, F. Luo, Z. Chen, M. Megharaj, R. Naidu, Green synthesized conditions impacting on the reactivity of Fe NPs for the degradation of malachite green, Spectrochim. Acta A Mol. Biomol. Spectrosc. 137(2015) 154-159. [11] C. Mystrioti, N. Papassiopi, A. Xenidis, D. Dermatas, M. Chrysochoou, Column study for the evaluation of the transport properties of polyphenol-coated nanoiron, J. Hazard. Mater. 281(2015) 64-69. [12] Z. Wang, Iron complex nanoparticles synthesized by eucalyptus leaves, ACS Sustain. Chem. Eng. 1(2013) 1551-1554. [13] T. Wang, X. Jin, Z. Chen, M. Megharaj, R. Naidu, Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater, Sci. Total Environ. 466(2014) 210-213. [14] K.S. Prasad, P. Gandhi, K. Selvaraj, Synthesis of green nano-iron particles (GnIP) and their application in adsorptive removal of As(Ⅲ) and As(V) from aqueous solution, Appl. Surf. Sci. 317(2014) 1052-1059. [15] V.V. Makarov, S.S. Makarova, A.J. Love, O.V. Sinitsyna, A.O. Dudnik, I.V. Yaminsky, M.E. Taliansky, N.O. Kalinina, Biosynthesis of stable iron oxide nanoparticles in aqueous extracts of Hordeum vulgare and Rumex acetosa plants, Langmuir 30(2014) 5982-5988. [16] S. Quideau, D. Deffieux, C. Douat-Casassus, L. Pouységu, Plant polyphenols:chemical properties, biological activities, and synthesis, Angew. Chem. Int. Ed. 50(2011) 586-621. [17] N. Horzum, M.M. Demir, M. Nairat, T. Shahwan, Chitosan fiber-supported zerovalent iron nanoparticles as a novel sorbent for sequestration of inorganic arsenic, RSC Adv. 3(2013) 7828-7837. [18] P.K. Tandon, R.C. Shukla, S.B. Singh, Removal of arsenic (Ⅲ) from water with claysupported zerovalent iron nanoparticles synthesized with the help of tea liquor, Ind. Eng. Chem. Res. 52(2013) 10052-10058. [19] M. Chrysochoou, C.P. Johnston, G. Dahal, A comparative evaluation of hexavalent chromium treatment in contaminated soil by calcium polysulfide and green-tea nanoscale zero-valent iron, J. Hazard. Mater. 201(2012) 33-42. [20] R. Abbassi, A.K. Yadav, N. Kumar, S. Huang, P.R. Jaffe, Modeling and optimization of dye removal using "green" clay supported iron nano-particles, Ecol. Eng. 61(2013) 366-370. [21] E.W. Rice, L. Bridgewater, A.P.H. Association, Standard Methods for the Examination of Water and Wastewater, American Public Health Association Washington, DC2012. [22] S.Bakhtiary, M. Shirvani,H.Shariatmadari, Adsorption-desorption behavior of2,4-D on NCP-modified bentonite and zeolite:Implications for slow-release herbicide formulations, Chemosphere 90(2013) 699-705. [23] K. Bukka, J.D. Miller, J. Shabtai, FTIR study of deuterated montmorillonites; Structural features relevant to pillared clay stability, Clay Clay Miner. 40(1992) 92-102. [24] L. Chen, Y. Huang, L. Huang, B. Liu, G. Wang, S. Yu, Characterization of Co(Ⅱ) removal from aqueous solution using bentonite/iron oxide magnetic composites, J. Radioanal. Nucl. Chem. 290(2011) 675-684. [25] A. Soliemanzadeh, M. Fekri, The application of green tea extract to prepare bentonite-supported nanoscale zero-valent iron and its performance on removal of Cr(VI):Effect of relative parameters and soil experiments, Microporous Mesoporous Mater 239(2017) 60-69. [26] P. Mondal, C.B. Majumder, B. Mohanty, Effects of adsorbent dose, its particle size and initial arsenic concentration on the removal of arsenic, iron and manganese from simulated ground water by Fe3+ impregnated activated carbon, J. Hazard. Mater. 150(2008) 695-702. [27] Z. Wang, E. Nie, J. Li, M. Yang, Y. Zhao, X. Luo, Z. Zheng, Equilibrium and kinetics of adsorption of phosphate onto iron-doped activated carbon, Environ. Sci. Pollut. Res. 19(2012) 2908-2917. [28] L.G. Yan, Y.Y. Xu, H.Q. Yu, X.D. Xin, Q. Wei, B. Du, Adsorption of phosphate from aqueous solution by hydroxy-aluminum, hydroxy-iron and hydroxy-iron-aluminum pillared bentonites, J. Hazard. Mater. 179(2010) 244-250. [29] S. Moharami, M. Jalali, Effect of TiO2, Al2O3, and Fe3O4 nanoparticles on phosphorus removal from aqueous solution, Environ. Prog. Sustain. Energy 33(2014) 1209-1219. [30] D. Wu, Y. Shen, A. Ding, M. Qiu, Q. Yang, S. Zheng, Phosphate removal from aqueous solutions by nanoscale zero-valent iron, Environ. Technol. 34(2013) 2663-2669. [31] A. Soliemanzadeh, M. Fekri, S. Bakhtiary, M.H. Mehrizi, Biosynthesis of iron nanoparticles and their application in removing phosphorus from aqueous solutions, Chem. Ecol. 32(2016) 286-300. [32] Y. Liu, Some consideration on the Langmuir isotherm equation, Colloids Surf. A Physicochem. Eng. Asp. 274(2006) 34-36. [33] Z. Wen, Y. Zhang, C. Dai, Removal of phosphate from aqueous solution using nanoscale zerovalent iron (nZVI), Colloids Surf. A Physicochem. Eng. Asp. 457(2014) 433-440. [34] S. Moharami, M. Jalali, Removal of phosphorus from aqueous solution by Iranian natural adsorbents, Chem. Eng. J. 223(2013) 328-339. [35] M. Kragović, A. Daković, M. Marković, J. Krstić, G.D. Gatta, N. Rotiroti, Characterization of lead sorption by the natural and Fe(Ⅲ)-modified zeolite, Appl. Surf. Sci. 283(2013) 764-774. [36] M. Hamidpour, M. Kalbasi, M. Afyuni, H. Shariatmadari, P.E. Holm, H.C.B. Hansen, Sorption hysteresis of Cd(Ⅱ) and Pb(Ⅱ) on natural zeolite and bentonite, J. Hazard. Mater. 181(2010) 686-691. [37] Y. Aşçi, Ü. Açikel, Y.S. Açikel, Equilibrium, hysteresis and kinetics of cadmium desorption from sodium-feldspar using rhamnolipid biosurfactant, Environ. Technol. 33(2012) 1857-1868. [38] N. Dhillon, B. Brar, Influence of long-term use of fertilizers and farmyard manure on the adsorption-desorption behaviour and bioavailability of phosphorus in soils, Nutr. Cycl. Agroecosyst. 75(2006) 67-78. [39] M. Jalali, E.N. Peikam, Phosphorus sorption-desorption behaviour of river bed sediments in the Abshineh river, Hamedan, Iran, related to their composition, Environ. Monit. Assess. 185(2013) 537-552. [40] S.Y. Yoon, C.G. Lee, J.A. Park, J.H. Kim, S.B. Kim, S.H. Lee, J.W. Choi, Kinetic, equilibrium and thermodynamic studies for phosphate adsorption to magnetic iron oxide nanoparticles, Chem. Eng. J. 236(2014) 341-347. [41] S. Benyoucef, M. Amrani, Adsorption of phosphate ions onto low cost Aleppo pine adsorbent, Desalination 275(2011) 231-236. [42] H.K. Boparai, M. Joseph, D.M. O'Carroll, Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano-zerovalent iron particles, J. Hazard. Mater. 186(2011) 458-465. [43] W. Liu, J. Zhang, C. Zhang, Y. Wang, Y. Li, Adsorptive removal of Cr(VI) by Fe-modified activated carbon prepared from Trapa natans husk, Chem. Eng. J. 162(2010) 677-684. [44] R.K. Bharali, K.G. Bhattacharyya, Biosorption of fluoride on Neem (Azadirachta indica) leaf powder, J. Environ. Chem. Eng. (2015). [45] H. Koyuncu, A.R. Kul, An investigation of Cu (Ⅱ) adsorption by native and activated bentonite:Kinetic, equilibrium and thermodynamic study, J. Environ. Chem. Eng. 2(2014) 1722-1730. |
[1] | Yingli Li, Zhishuncheng Li, Guangfei Qu, Rui Li, Shuaiyu Liang, Junhong Zhou, Wei Ji, Huiming Tang. Mechanism, behaviour and application of iron nitrate modified carbon nanotube composites for the adsorption of arsenic in aqueous solutions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 26-36. |
[2] | Jing Huang, Honghui Cai, Qian Zhao, Yunpeng Zhou, Haibo Liu, Jing Wang. Dual-functional pyrene implemented mesoporous silicon material used for the detection and adsorption of metal ions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 108-117. |
[3] | Lingli Chen, Yueting Shi, Sijun Xu, Junle Xiong, Fang Gao, Shengtao Zhang, Hongru Li. Enhanced adsorption of target branched compounds including antibiotic norfloxacin frameworks on mild steel surface for efficient protection: An experimental and molecular modelling study [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 212-227. |
[4] | Alexander Nti Kani, Evans Dovi, Aaron Albert Aryee, Runping Han, Zhaohui Li, Lingbo Qu. Mechanisms and reusability potentials of zirconium-polyaziridine-engineered tiger nut residue towards anionic pollutants [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 275-292. |
[5] | Yuan Liu, Hanting Xiong, Jingwen Chen, Shixia Chen, Zhenyu Zhou, Zheling Zeng, Shuguang Deng, Jun Wang. One-step ethylene separation from ternary C2 hydrocarbon mixture with a robust zirconium metal-organic framework [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 9-15. |
[6] | Hui Jiang, Zijian Zhao, Ning Yu, Yi Qin, Zhengwei Luo, Wenhua Geng, Jianliang Zhu. Synthesis, characterization, and performance comparison of boron using adsorbents based on N-methyl-D-glucosamine [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 16-31. |
[7] | Sufei Wang, Mengjie Hao, Danyang Xiao, Tianmiao Zhang, Hua Li, Zhongshan Chen. Synthesis of porous carbon nanomaterials and their application in tetracycline removal from aqueous solutions [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 200-209. |
[8] | Runze Chen, Yuran Chen, Xuemin Liang, Yapeng Kong, Yangyang Fan, Quan Liu, Zhenyu Yang, Feiying Tang, Johnny Muya Chabu, Maru Dessie Walle, Liqiang Wang. Oxidative exfoliation of spent cathode carbon: A two-in-one strategy for its decontamination and high-valued application [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 262-269. |
[9] | Shanghong Ma, Haitao Zhang, Jianbo Qu, Xiuzhong Zhu, Qingfei Hu, Jianyong Wang, Peng Ye, Futao Sai, Shiwei Chen. Preparation of waterborne polyurethane/β-cyclodextrin composite nanosponge by ion condensation method and its application in removing of dyes from wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 124-136. |
[10] | Yutong Jiang, Yifeng Chen, Fuliu Yang, Jixue Fan, Jun Li, Zhuhong Yang, Xiaoyan Ji. Efficient SO2 removal using aqueous ionic liquid at low partial pressure [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 355-363. |
[11] | Yueting Shi, Junhai Zhao, Lingli Chen, Hongru Li, Shengtao Zhang, Fang Gao. Double open mouse-like terpyridine parts based amphiphilic ionic molecules displaying strengthened chemical adsorption for anticorrosion of copper in sulfuric acid solution [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 233-246. |
[12] | Jian Wang, Yuanhui Shen, Donghui Zhang, Zhongli Tang, Wenbin Li. Integrated vacuum pressure swing adsorption and Rectisol process for CO2 capture from underground coal gasification syngas [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 265-279. |
[13] | Yujia Cui, Zhiqiang Tan, Yanan Wang, Shuxian Shi, Xiaonong Chen. One-step crosslinking preparation of tannic acid particles for the adsorption and separation of cationic dyes [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 309-318. |
[14] | Shanshan Mao, Tao Shen, Qing Zhao, Tong Han, Fan Ding, Xin Jin, Manglai Gao. Selective capture of silver ions from aqueous solution by series of azole derivatives-functionalized silica nanosheets [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 319-328. |
[15] | Feng Pan, Sugang Ma, Yu Ge, Chuanlin Fan, Qingshan Zhu. Fluidization thermal decomposition of sodium fluosilicate [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 329-337. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 305
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 2153
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||