[1] D. Bellini, A. Pavesio and M. Terrassan. U.S. Patent Application. 11/989. 224. (2006). [2] A.D. McNaught, Compendium of chemical terminology, Blackwell Science, Oxford, 1997. [3] J. Li, R.B. Lewis, J.R. Dahn, Sodium carboxymethyl cellulose:A potential binder for Si negative electrodes for Li-ion batteries, Electrochem. Solid-State Lett. 10(2) (2007) A17-A20. [4] F. He, D. Zhao, Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers, Environ. Sci. Res. 41(17) (2007) 6216-6221. [5] S. Rossi, M.C. Bonferoni, F. Ferrari, C. Caramella, Drug release and wash ability of mucoadhesive gels based on sodiu carboxymethyl cellulose and polyacrylic acid, Pharm. Dev. Technol. 4(1) (1999) 55-63. [6] T.P. Kravtchenko, J. Renoir, A novel method for determining the dissolution kinetics of hydrocolloid powders, Food Hydrocoll. 13(1999) 219-225. [7] A. Marabi, G. Mayor, Assessing dissolution kinetics of powders by a single particle approach, Chem. Eng. J. 139(2008) 118-127. [8] M. Dali, Determination of mass transfer dissolution rate constants from critical time of dissolution of a powder sample, Pharm. Dev. Technol. 4(1) (1999) 1-8. [9] A.A. Noyes, W.R. Whitney, The rate of solution of solid substances in their own solutions, J. Am. Ceram. Soc. 19(1897) 930-934. [10] A.W. Hixson, J.H. Crowell, Dependence of reaction velocity upon surface and agitation, Ind. Eng. Chem. Res. 23(1931) 923-931. [11] V. Pillay, R. Fassihi, Unconventional dissolution methodologies, J. Pharm. Sci. 88(1999) 843-851. [12] S. Dash, P.N. Murthy, L. Nath, P. Chowdhury, Kinetics modeling on drug release from controlled drug delivery systems, Acta Pol. Pharm. 67(3) (2010) 217-223. [13] B. Dousova, L. Fuitova, D. Kolousek, M. Lhotka, T.M. Grygar, P. Spurna, Stability of iron in clays under different leaching conditions, Clay Clay Miner. 62(2) (2014) 145-152. |