[1] V. Ettler, Soil contamination near non-ferrous metal smelters:A review, Appl. Geochem. 64(2016) 56-74.[2] H.K. Kim, T.I. Jang, S.M. Kim, S.W. Park, Impact of domestic wastewater irrigation on heavy metal contamination in soil and vegetables, Environ. Earth Sci. 73(2015) 2377-2383.[3] R.A. Wuana, F.E. Okieimen, Heavy metals in contaminated soils:a review of sources, chemistry, risks and best available strategies for remediation, ISRN Ecol. 2011(2011) 1-20.[4] D.Y.S. Yan, I.M.C. Lo, Pyrophosphate coupling with chelant-enhanced soil flushing of field contaminated soils for heavy metal extraction, J. Hazard. Mater. 199(2012) 51-57.[5] K.R. Reddy, A.Z. Al-Hamdan, Enhanced sequential flushing process for removal of mixed contaminants from soils, Water Air Soil Pollut. 224(12) (2013) 1709-1721.[6] N.R. Hartley, D.C.W. Tsang, W.E. Old, P.A. Weber, Soil washing enhanced by humic substances and biodegradable chelating agents, Soil Sediment Contam. 23(6) (2014) 599-613.[7] M. Ye, M. Sun, Z. Liu, N. Ni, Y. Chen, C. Gu, F.O. Kengara, H. Li, X. Jiang, Evaluation of enhanced soil washing process and phytoremediation with maize oil, carboxymethyl-beta-cyclodextrin, and vetiver grass for the recovery of organochlorine pesticides and heavy metals from a pesticide factory site, J. Environ. Manag. 141(2014) 161-168.[8] S. Ehsan, S. Ali, S. Noureen, M. Rizwan, Citric acid assisted phytoremediation of cadmium by Brassica napus L, Ecotoxicol. Environ. Saf. 106(2014) 164-172.[9] A. Van Der Ent, A.J.M. Baker, R.D. Reeves, R.L. Chaney, C.W.N. Anderson, J.A. Meech, P.D. Erskine, M.O. Simonnot, J. Vaughan, J.L. Morel, G. Echevarria, B. Fogliani, Q. Rongliang, D.R. Mulligan, Agromining:farming for metals in the future? Environ. Sci. Technol. 49(2005) 4773-4780.[10] O.M. Ontanon, P.S. Gonzalez, L.F. Ambrosio, C.E. Paisio, E. Agostini, Rhizoremediation of phenol and chromium by the synergistic combination of a native bacterial strain and Brassica napus hairy roots, Int. Biodeterior. Biodegrad. 88(2014) 192-198.[11] M.A. Polti, J.D. Aparicio, C. Benimeli, M.J. Amoroso, Simultaneous bioremediation of Cr(VI) and lindane in soil by actinobacteria, Int. Biodeterior. Biodegrad. 88(2014) 48-55.[12] J.N. Meegoda, R. Perera, Ultrasound to decontaminate heavy metals in dredged sediments, J. Hazard. Mater. 85(1-2) (2011) 73-89.[13] A.T. Yeung, Contaminant extractability by electrokinetics, Environ. Eng. Sci. 23(1) (2006) 202-224.[14] A.T. Yeung, Y.-Y. Gu, A review on techniques to enhance electrochemical remediation of contaminated soils, J. Hazard. Mater. 195(2011) 11-29.[15] A.T. Yeung, Y.-Y. Gu, "Use of Chelating Agents in Electrochemical Remediation of Contaminated Soil", in:Chelating Agents for Land Decontamination Technologies, ASCE Press, Virginia, 2012212-280.[16] J.S.H. Wong, R.E. Hicks, R.F. Probstein, EDTA-enhanced electroremediation of metalcontaminated soils, J. Hazard. Mater. 55(1-3) (1997) 61-79.[17] K.R. Reddy, C. Chaparro, R.E. Saichek, Removal of mercury from clayey soils using electrokinetics, J. Environ. Sci. Health A 38(2) (2003) 307-338.[18] K.R. Reddy, P.R. Ala, Electrokinetic remediation of metal-contaminated field soil, Sep. Sci. Technol. 40(8) (2005) 1701-1720.[19] A.T. Yeung, C. Hsu, Electrokinetic remediation of cadmium-contaminated clay, J. Environ. Eng. 131(2) (2005) 298-304.[20] D.M. Zhou, C.F. Deng, A.N. Alshawabkeh, L. Cang, Effects of catholyte conditioning on electrokinetic extraction of copper from mine tailings, Environ. Int. 31(6) (2005) 885-890.[21] E. Gidarakos, A. Giannis, Chelate agents enhanced electrokinetic remediation for removal cadmium and zinc by conditioning catholyte pH, Water Air Soil Pollut. 172(1-4) (2006) 295-312.[22] T. Kimura, K.I. Takase, S. Tanaka, Concentration of copper and a copper-EDTA complex at the pH junction formed in soil by an electrokinetic remediation process, J. Hazard. Mater. 143(3) (2007) 668-672.[23] M. Masi, R. Iannelli, G. Losito, Ligand-enhanced electrokinetic remediation of metalcontaminated marine sediments with high acid buffering capacity, Environ. Sci. Pollut. Res. 23(11) (2015) 10566-10576.[24] R.B. Fu, D.D. Wen, X.Q. Xia, W. Zhang, Y.-Y. Gu, Electrokinetic remediation of chromium (Cr)-contaminated soil with citric acid (CA) and polyaspartic acid (PASP) as electrolytes, Chem. Eng. J. 316(2017) 601-608.[25] F.S. Meng, H. Xue, Y.Y. Wang, B.H. Zheng, J.L. Wang, Citric-acid preacidification enhanced electrokinetic remediation for removal of chromium from chromiumresidue-contaminated soil, Environ. Technol. 39(3) (2018) 356-362.[26] F. Bordas, A.C.M. Bourg, Effect of complexing agents (EDTA and ATMP) on the remobilization of heavy metals from a polluted river sediment, Aquat. Geochem. 4(2) (1998) 201-214.[27] P.K.A. Hong, W. Jiang, Factors in the selection of chelating agents for extraction of lead from contaminated soil:effectiveness, selectivity, and recoverability, Biogeochemistry of Chelating Agents, Oxford University Press, Washington, DS 2005, pp. 421-432.[28] Y.-Y. Gu, A.T. Yeung, D.C.W. Tsang, R.B. Fu, Applications of citric acid industrial wastewater and phosphonates for soil remediation:effects on temporal change of cadmium distribution, Soil Sediment Contam. 22(2013) 876-889.[29] Y.-Y. Gu, A.T. Yeung, A. Koenig, H.J. Li, Effects of chelating agents on zeta potential of cadmium-contaminated natural clay, Sep. Sci. Technol. 44(2009) 2203-2222.[30] Y.-Y. Gu, A.T. Yeung, Use of citric acid industrial wastewater to enhance electrochemical remediation of cadmium-contaminated natural clay, Geotechnical Special Publication No. 225, ASCE Press 2012, pp. 3995-4004.[31] J.L. Torrens, D.C. Herman, R.M. Miller-Maier, Biosurfactant (Rhamnolipid) sorption and the impact on rhamnolipid-facilitated removal of cadmium from various soils under saturated flow conditions, Environ. Sci. Technol. 32(6) (1998) 776-781.[32] Y.-Y. Gu, R.B. Fu, H.J. Li, H. An, A new two-dimensional experimental apparatus for electrochemical remediation processes, Chin. J. Chem. Eng. 23(2015) 1389-1397.[33] A.L. Page, Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties, Am Soc of Agron, Inc, Madison, 1982.[34] Y.-Y. Gu, A.T. Yeung, Desorption of cadmium from a natural Shanghai clay using citric acid industrial wastewater, J. Hazard. Mater. 191(2011) 144-149.[35] R. Iannelli, M. Masi, A. Ceccarini, M.B. Ostuni, R. Lageman, A. Muntoni, D. Spiga, A. Polettini, A. Marini, R. Pomi, Electrokinetic remediation of metal-polluted marine sediments:experimental investigation for plant design, Electrochim. Acta 181(2015) 146-159.[36] K. Wolf, P.A. Gilbert, EDTA-ethylenediaminetetraacetic acid, The Handbook of Environmental Chemistry, vol. 3(F), Springer-Verlag, Berlin, 1992, pp. 243-259.[37] A.E. Martell, R.M. Smith, R.J. Motekaitis, NIST critically selected stability constants of metal complexes, Version 8.0, National Institute of Standards and Technology, Gaithersburg, Maryland, 2004.[38] B. Nowack, Environmental chemistry of phosphonates, Water Res. 37(11) (2003) 2533-2546.[39] K. Popov, A. Kolosov, V.G. Yachmenev, N. Shabanova, A. Artemyeva, A. Frid, B. Kogut, S. Vesnovskii, V. Sukharenko, A laboratory-scale study of applied voltage and chelating agent on the electrokinetic separation of phenol from soil, Sep. Sci. Technol. 36(13) (2001) 2971-2982.[40] B. Nowack, A.T. Stone, The influence of metal ions on the adsorption of phosphonates onto goethite, Environ. Sci. Technol. 33(20) (1999) 3627-3633.[41] W.E. Gledhill, T.C.J. Feijtel, Environmental properties and safety assessment of organic phosphonates used for detergent and water treatment applications, The Handbook of Environmental Chemistry, vol. 3(F), Springer-Verlag, Berlin, 1992, pp. 261-285.[42] D.M. Zhou, C.F. Deng, L. Cang, Electrokinetic remediation of a Cu contaminated red soil by conditioning catholyte pH with different enhancing chemical reagents, Chemosphere 56(3) (2004) 265-273.[43] Y.B. Acar, A.N. Alshawabkeh, Principles of electrokinetic remediation, Environ. Sci. Technol. 27(3) (1993) 2638-2647.[44] C.J. Bruell, B.A. Segall, M.T. Walsh, Electroosmotic removal of gasoline hydrocarbons and TCE from clay, J. Environ. Eng. ASCE 118(1) (1992) 68-83.[45] R.F. Probstein, R.E. Hicks, Removal of contaminants from soils by electric-fields, Science 260(5107) (1993) 498-503.[46] G.R. Eykholt, D.E. Daniel, Impact of system chemistry on electroosmosis in contaminated soil, J. Geotech. Eng. ASCE 120(5) (1994) 797-815.[47] A.T. Yeung, T.B. Scott, S. Gopinath, R.M. Menon, C. Hsu, Design, fabrication, and assembly of an apparatus for electrokinetic remediation studies, Geotech. Test. J. 20(2) (1997) 199-210.[48] K.R. Reddy, S. Chinthamreddy, Effects of initial form of chromium on electrokinetic remediation in clays, Adv. Environ. Res. 7(2) (2003) 353-365.[49] S.Y. Shin, S.M. Park, K. Baek, Soil moisture could enhance electrokinetic remediation of arsenic-contaminated soil, Environ. Sci. Pollut. Res. 24(10) (2017) 9820-9825.[50] K.I. Popov, N.A. Shabanova, A.A. Artemeva, E.M. Urinovich, Y.V. Tulaeva, Influence of chelating agents on the electrokinetic potential of the clay fraction of soddy podzolic soils, Colloid J. 59(2) (1997) 212-214.[51] K. Popov, V. Yachmenev, A. Kolosov, N. Shabanova, Effect of soil electroosmotic flow enhancement by chelating reagents, Colloids Surf. A Physicochem. Eng. Asp. 160(2) (1999) 135-140.[52] A.Y. Kolosov, K.I. Popov, N.A. Shabanova, A.A. Artem'eva, B.M. Kogut, Electrokinetic removal of hydrophobic organic compounds from soil, Russ. J. Appl. Chem. 74(4) (2001) 631-635.[53] K. Popov, H. Ronkkomaki, L.H.J. Lajunen, Critical evaluation of stability constants of phosphonic acids (IUPAC technical report), Pure Appl. Chem. 73(10) (2001) 1641-1677.[54] Y.S. Ng, B. Sen Gupta, M.A. Hashim, Remediation of Pb/Cr co-contaminated soil using electrokinetic process and approaching electrode technique, Environ. Sci. Pollut. Res. 23(1) (2016) 546-555.[55] Y. Song, M.T. Ammami, A. Benamar, S. Mezazigh, H.Q. Wang, Effect of EDTA, EDDS, NTA and citric acid on electrokinetic remediation of As, Cd, Cr, Cu, Ni, Pb and Zn contaminated dredged marine sediment, Environ. Sci. Pollut. Res. 23(11) (2015) 10577-10586.[56] G.C.C. Yang, S.L. Lin, Removal of lead from a silt loam soil by electrokinetic remediation, J. Hazard. Mater. 58(1-3) (1998) 285-299.[57] M. Pociecha, D. Lestan, EDTA leaching of Cu contaminated soil using electrochemical treatment of the washing solution, J. Hazard. Mater. 165(2009) 533-539. |