Chin.J.Chem.Eng. ›› 2018, Vol. 26 ›› Issue (6): 1252-1263.DOI: 10.1016/j.cjche.2018.03.017
• Reviews • Previous Articles Next Articles
Yi Fei1,2, Bing Sun1, Fan Zhang1, Wei Xu1, Ning Shi1, Jie Jiang1
Received:
2017-12-07
Revised:
2018-03-13
Online:
2018-08-03
Published:
2018-06-28
Contact:
Wei Xu,E-mail address:xuw.qday@sinopec.com
Supported by:
Supported by the National Key Research and Development Program of China (2016YFB0301701).
Yi Fei1,2, Bing Sun1, Fan Zhang1, Wei Xu1, Ning Shi1, Jie Jiang1
通讯作者:
Wei Xu,E-mail address:xuw.qday@sinopec.com
基金资助:
Supported by the National Key Research and Development Program of China (2016YFB0301701).
Yi Fei, Bing Sun, Fan Zhang, Wei Xu, Ning Shi, Jie Jiang. Inherently safer reactors and procedures to prevent reaction runaway[J]. Chin.J.Chem.Eng., 2018, 26(6): 1252-1263.
Yi Fei, Bing Sun, Fan Zhang, Wei Xu, Ning Shi, Jie Jiang. Inherently safer reactors and procedures to prevent reaction runaway[J]. Chinese Journal of Chemical Engineering, 2018, 26(6): 1252-1263.
[1] J.A. Barton, P.F. Nolan, Incidents in the Chemical Industries Due to Thermal Runaway Chemical Reactions, IchemE Symp. Series, Vol. No. 115, Institution of Chemical Engineers, Dordrecht, 1989. [2] R. Saada, D. Patel, B. Saha, Causes and consequences of thermal runaway incidents-Will they ever be avoided, Process. Saf. Environ. Prot. 97(2015) 109-115. [3] M. Morbidelli, A. Varma, A generalized criterion for parametric sensitivity:Application to thermal explosion theory, Chem. Eng. Sci. 43(1988) 91-102. [4] T.A. Kletz, Plant Design for Safety:A User-Friendly Approach, Hemisphere Publishing Corporation, New York, 1991. [5] CCPS, Inherently Safer Chemical Processes:A Life Cycle Approach, 2nd edition John Wiley & Sons, New Jersey, 2009. [6] F. Stoessesl, Thermal Safety of Chemical Processes:Risk Assessment and Process Design, Wiley-VCH, Zurich, 2008. [7] F.I. Khan, S.A. Abbasi, Inherently safer design based on rapid risk analysis, J. Loss Prev. Process Ind. 11(1998) 361-372. [8] J.P. Visser, Managing safety in the oil industry:The way ahead, 8th International Symposium Loss Prevention and Safety Promotion in the Process Industries, Elsevier Science Ltd, Antwerp, 1995. [9] B. Knegtering, H.J. Pasman, Safety of the process industries in the 21st century:A changing need of process safety management for a changing industry, J. Loss Prev. Process Ind. 22(2009) 162-168. [10] P. Jain, H.J. Pasman, S.P. Waldram, W.J. Rogers, M.S. Mannan, Did we learn about risk control since Seveso? Yes, we surely did, but is it enough? An historical brief and problem analysis, J. Loss Prev. Process Ind. 49(2016) 5-17. [11] Y.Y. Haimes, On the definition of resilience in systems, Risk Anal. 29(2009) 498-501. [12] R.D. McIntosh, P.F. Nolan, Review of the selection and design of mitigation systems for runaway chemical reactions, J. Loss Prev. Process Ind. 14(200127-42. [13] T.J. Snee, L. Cusco, Pilot-scale evaluation of the inhibition of exothermic runaway, Process. Saf. Environ. Prot. 83(2005) 135-144. [14] D. Jablonski, U. Hauptmanns, Feasibility study for a passive trip system to prevent a runaway reaction in a batch reactor, J. Hazard. Mater. 167(2009) 1095-1099. [15] S. Ferrouillat, P. Tochon, D. Della Valle, H. Peerhossaini, Open loop thermal control of exothermal chemical reactions in multifunctional heat exchangers, Int. J. Heat Mass Transf. 49(20062479-2490. [16] Z. Anxionnaz, M. Cabassud, C. Gourdon, P. Tochon, Heat exchanger/reactors (HEX reactors):Concepts, technologies:State-of-the-art, Chem. Eng. Process. Process Intensif. 47(20082029-2050. [17] A. Stankiewicz, J.A. Moulijn, Re-engineering the Chemical Processing Plant, CRC Press, Boca Raton, 2003. [18] B.K.Watton, K.T. Symonds, S.P. Symonds, Heat exchanger and/or fluid mixing means, Eur. Pat., 9855812(1998). [19] F. Chopard, Improved device for exchange and/or reaction between fluids, Eur. Pat., 02/085511(2002). [20] S. Haugwitz, P. Hagander, Challenges in start-up control of a heat exchange reactor with exothermic reactions:A hybrid approach, 2nd IFAC Conference on Analysis and Design of Hybrid Systems, Elsevier Science Ltd, Alghero, 2006. [21] F. Théron, Z. Anxionnaz-Minvielle, M. Cabassud, C. Gourdon, P. Tochon, Characterization of the performances of an innovative heat-exchanger/reactor, Chem. Eng. Process. Process Intensif. 82(2014) 30-41. [22] L. Despènes, S. Elgue, C. Gourdon, M. Cabassud, Impact of the material on the thermal behaviour of heat exchangers-reactors, Chem. Eng. Process. Process Intensif. 52(2012) 102-111. [23] W. Benaïssa, N. Gabas, M. Cabassud, D. Carson, S. Elgue, M. Demissy, Evaluation of an intensified continuous heat-exchanger reactor for inherently safer characteristics, J. Loss Prev. Process Ind. 21(2008) 528-536. [24] T.S.A. Heugebaert, B.I. Roman, A. De Blieck, C.V. Stevens, A safe production method for acetone cyanohydrin, Tetrahedron Lett. 51(2010) 4189-4191. [25] M. Shang, T. Noel, Q. Wang, Y. Su, K. Miyabayashi, V. Hessel, S. Hasebe, 2-and 3-Stage temperature ramping for the direct synthesis of adipic acid in micro-flow packed-bed reactors, Chem. Eng. J. 260(2015) 454-462. [26] M. Janicke, A. Holzwarth, M. Fichtner, K. Schubert, F. Schüth, A microstructured catalytic reactor/heat exchanger for the controlled catalytic reaction between H2 and O2, Stud. Surf. Sci. Catal. (2000) 437-442. [27] M.T. Janicke, H. Kestenbaum, U. Hagendorf, F. Schüth, M. Fichtner, K. Schubert, The controlled oxidation of hydrogen from an explosive mixture of gases using a microstructured reactor/heat exchanger and Pt/Al2O3 catalyst, J. Catal. 191(2000282-293. [28] H. Kestenbaum, A. Lange de Oliveira, W. Schmidt, F. Schüth, W. Ehrfeld, K. Gebauer, H. Löwe, T. Richter, D. Lebiedz, I. Untiedt, H. Züchner, Silver-catalyzed oxidation of ethylene to ethylene oxide in a microreaction system, Ind. Eng. Chem. Res. 41(2002) 710-719. [29] A.G. Gribovskii, E.V. Ovchinnikova, N.V. Vernikovskaya, D.V. Andreev, V.A. Chumachenko, L.L. Makarshin, Microchannel reactor for intensifying oxidation of methanol to formaldehyde over Fe-Mo catalyst, Chem. Eng. J. 308(2017) 135-141. [30] R. Dittmeyer, J.D. Grunwaldt, A. Pashkova, A review of catalyst performance and novel reaction engineering concepts in direct synthesis of hydrogen peroxide, Catal. Today 248(2015) 149-159. [31] A. Deshpande, S. Krishnaswamy, K. Ponnani, Pulsed micro-reactor:An alternative to estimating kinetic parameters of non-catalytic gas-solid reactions, Chem. Eng. Res. Des. 117(2017) 382-393. [32] V. Burkle-Vitzthum, F. Moulis, J. Zhang, J.-M. Commenge, E. Schaer, P.-M. Marquaire, Annular flow microreactor:An efficient tool for kinetic studies in gas phase at very short residence times, Chem. Eng. Res. Des. 94(2015) 611-623. [33] A. Günther, S.A. Khan, M. Thalmann, F. Trachsel, K.F. Jensen, Transport and reaction in microscale segmented gas-liquid flow, Lab Chip 4(2004278-286. [34] J.S. Zhang, K. Wang, C.Y. Zhang, G.S. Luo, Safety evaluating of Beckmann rearrangement of cyclohexanone oxime in microreactors using inherently safer design concept, Chem. Eng. Process. Process Intensif. 110(2016) 44-51. [35] T. Salmi, J. Hernández Carucci, M. Roche, K. Eränen, J. Wärnå, D. Murzin, Microreactors as tools in kinetic investigations:Ethylene oxide formation on silver catalyst, Chem. Eng. Sci. 87(2013) 306-314. [36] T.A. Nijhuis, J. Chen, S.M.A. Kriescher, J.C. Schouten, The direct epoxidation of propene in the explosive regime in a microreactor-A study into the reaction kinetics, Ind. Eng. Chem. Res. 49(2010) 10479-10485. [37] S. Heinrich, F. Edeling, C. Liebner, H. Hieronymus, T. Lange, E. Klemm, Catalyst as ignition source of an explosion inside a microreactor, Chem. Eng. Sci. 84(2012) 540-543. [38] C. Liebner, S. Heinrich, F. Edeling, H. Hieronymus, T. Lange, Elias Klemmb, Explosion initiation, propagation, and suppression inside a micro structured reactor, Chem. Eng. Trans. 31(2013) 601-606. [39] C. Liebner, J. Fischer, S. Heinrich, T. Lange, H. Hieronymus, E. Klemm, Are micro reactors inherently safe? An investigation of gas phase explosion propagation limits on ethene mixtures, Process. Saf. Environ. Prot. 90(2012) 77-82. [40] M.A. Nettleton, Gaseous Detonation:Their Nature, Effects and Control, Chapman & Hall, London, 1987. [41] Y. Zhang, Y.-H. Chung, S.-H. Liu, C.-M. Shu, J.-C. Jiang, Analysis of thermal hazards of O,O-dimethylphosphoramidothioate by DSC, TG, VSP2, and GC/MS, Thermochim. Acta 652(2017) 69-76. [42] C.P. Lin, J.S. Li, J.M. Tseng, M.S. Mannan, Thermal runaway reaction for highly exothermic material in safe storage temperature, J. Loss Prev. Process Ind. 40(2016259-265. [43] S.H. Liu, C.M. Shu, H.Y. Hou, Applications of thermal hazard analyses on process safety assessments, J. Loss Prev. Process Ind. 33(2015) 59-69. [44] M. Eissen, A. Zogg, K. Hungerbühler, The runaway scenario in the assessment of thermal safety:Simple experimental access by means of the catalytic decomposition of H2O2, J. Loss Prev. Process Ind. 16(2003289-296. [45] H. Rakotondramaro, J. Wärnå, L. Estel, T. Salmi, S. Leveneur, Cooling and stirring failure for semi-batch reactor:Application to exothermic reactions in multiphase reactor, J. Loss Prev. Process Ind. 43(2016) 147-157. [46] L. Zhang, W.D. Yu, X.H. Pan, J.J. Fang, M. Hua, F.M. Chen, J.C. Jiang, Thermal hazard assessment for synthesis of 3-methylpyridine-N-oxide, J. Loss Prev. Process Ind. 35(2014) 316-320. [47] F. Stoessel, What is your thermal risk? Chem. Eng. Prog. 89(1993) 68-75. [48] A. Kossoy, I. Sheinman, Evaluating thermal explosion hazard by using kinetics-based simulation approach, Process. Saf. Environ. Prot. 82(2004) 421-430. [49] A. Pineda-Solano, L. Saenz-Noval, S. Nayak, S. Waldram, M. Papadaki, M.S. Mannan, Inherently safer reactors:Improved efficiency of 3-picoline N-oxidation in the temperature range 110-125℃, Process. Saf. Environ. Prot. 90(2012) 404-410. [50] V. Casson Moreno, V. Russo, R. Tesser, M. Di Serio, E. Salzano, Thermal risk in semibatch reactors:The epoxidation of soybean oil, Process. Saf. Environ. Prot. 109(2017) 529-537. [51] B.A.A. van Woezik, K.R. Westerterp, Runaway behavior and thermally safe operation of multiple liquid-liquid reactions in the semi-batch reactor:The nitric acid oxidation of 2-octanol, Chem. Eng. Process. 41(2002) 59-77. [52] B.A.A. van Woezik, K.R. Westerterp, The nitric acid oxidation of 2-octanol. A model reaction for multiple heterogeneous liquid-liquid reactions, Chem. Eng. Process. 39(2000) 521-537. [53] M. Steensma, K.R. Westerterp, Thermally safe operation of a semi-batch reactor for liquid-liquid reactions. Slow reactions, Ind. Eng. Chem. Res. 29(1990) 1259-1270. [54] K.R. Westerterp, E.J. Molga, No more runaways in fine chemical reactors, Ind. Eng. Chem. Res. 43(2004) 4585-4594. [55] C.H. Barkelew, Stability of chemical reactors, Chem. Eng. Prog. Symp. Ser. 25(1959) 37-46. [56] J. Adler, J.W. Enig, The critical conditions in thermal explosion theory with reactant consumption, Combust. Flame 8(1964) 97-103. [57] L. Hub, J.D. Jones, Early on-line detection of exothermic reactions, Plant/Oper. Prog. 5(1986221-224. [58] F. Strozzi, J.M. Zaldívar, A.E. Kronberg, K.R. Westerterp, On-line runaway detection in batch reactors using chaos theory techniques, AICHE J. 45(19992429-2443. [59] Z. Guo, W. Bai, Y. Chen, R. Wang, L. Hao, H. Wei, An adiabatic criterion for runaway detection in semibatch reactors, Chem. Eng. J. 288(2016) 50-58. [60] J. Bosch, F. Strozzi, T.J. Snee, J.A. Hare, J.M. Zaldívar, A comparative analysis between temperature and pressure measurements for early detection of runaway initiation, J. Loss Prev. Process Ind. 17(2004) 389-395. [61] C. Ampelli, D. Di Bella, G. Maschio, A. Russo, Calorimetric study of the inhibition of runaway reactions during methylmethacrylate polymerization processes, J. Loss Prev. Process Ind. 19(2006) 419-424. |
[1] | Xuejing He, Zhenlin Li, Ji Wang, Hai Yu. Effects of tube cross-sectional shapes on flow pattern, liquid film and heat transfer of n-pentane across tube bundles [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 16-25. |
[2] | Wensheng Li, Liangyuan Qi, Daolin Ye, Wei Cai, Weiyi Xing. Facile modification of aluminum hypophosphate and its flame retardancy for polystyrene [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 90-98. |
[3] | Jiahao Xing, Huaizhi Han, Ruitian Yu, Wen Luo. Numerical simulation of flow and heat transfer of n-decane in sub-millimeter spiral tube at supercritical pressure [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 173-185. |
[4] | Lijuan Zhao, Zhe Tan, Xiaoguang Zhang, Qijun Zhang, Wei Wang, Qiang Deng, Jie Ma, De'an Pan. Research on process modeling and simulation of spent lead paste desulfurization enhanced reactor [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 293-303. |
[5] | Shanwei Xiong, Li Zhou, Yiyang Dai, Xu Ji. Attention-based long short-term memory fully convolutional network for chemical process fault diagnosis [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 1-14. |
[6] | Chengang Yang, Huaizhi Han, Quan Zhu, Xiangyuan Li. Cracking and buoyancy effect on hydrocarbon endothermic and heat transfer characteristics in rectangular mini-channel [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 242-254. |
[7] | Yiming Bai, Shuaiyu Xiang, Feifan Cheng, Jinsong Zhao. A dynamic-inner LSTM prediction method for key alarm variables forecasting in chemical process [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 266-276. |
[8] | Kang Wang, Wei Tan, Liyan Liu. “Relay-mode” promoting permeation of water-based fire extinguishing agent in granular materials porous media stacks [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 98-112. |
[9] | Kuo Lin, Zhongjie Shen, Qinfeng Liang, Jianliang Xu, Haifeng Liu. The study of the effect of gas-phase fluctuation on slag flow and refractory brick corrosion in the slag tapping hole of an entrained-flow gasifier [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 271-281. |
[10] | Feng Jiang, Di Xu, Ruijia Li, Guopeng Qi, Xiulun Li. Particle collision behavior and heat transfer performance in a Na2SO4 circulating fluidized bed evaporator [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 40-52. |
[11] | Guijia Cui, Hong Wang, Fengping Yu, Haiying Che, Xiaozhen Liao, Linsen Li, Weimin Yang, Zifeng Ma. Scalable synthesis of Na3V2(PO4)3/C with high safety and ultrahigh-rate performance for sodium-ion batteries [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 280-286. |
[12] | Mehdi Miansari, Mehdi Rajabtabar Darvishi, Davood Toghraie, Pouya Barnoon, Mojtaba Shirzad, As'ad Alizadeh. Numerical investigation of grooves effects on the thermal performance of helically grooved shell and coil tube heat exchanger [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 424-434. |
[13] | Zhijie Shen, Jingchun Min. Non-equilibrium thermodynamic analysis of coupled heat and moisture transfer across a membrane [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 497-506. |
[14] | Yu-Liang Sun, Davood Toghraie, Omid Ali Akbari, Farzad Pourfattah, As'ad Alizadeh, Navid Ghajari, Mehran Aghajani. Thermal performance and entropy generation for nanofluid jet injection on a ribbed microchannel with oscillating heat flux: Investigation of the first and second laws of thermodynamics [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 450-464. |
[15] | Zhixia Deng, Shuanshi Fan, Yanhong Wang, Xuemei Lang, Gang Li. Enhance hydrates formation with stainless steel fiber for high capacity methane storage [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 435-443. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 225
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 937
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||