[1] I.E. Grossmann, R.M. Apap, B.A. Calfa, P. Garcia-Herreros, Q. Zhang, Recent advances in mathematical programming techniques for the optimization of process systems under uncertainty, Comput. Chem. Eng. 91(2016) 3-14.[2] N.V. Sahinidis, Optimization under uncertainty:state-of-the-art and opportunities, Comput. Chem. Eng. 28(2004) 971-983.[3] G.I. Schueller, H.A. Jensen, Computational methods in optimization considering uncertainties-An overview, Comput. Methods Appl. Mech. Eng. 198(2008) 2-13.[4] Z. Li, M. Ierapetritou, Process scheduling under uncertainty:Review and challenges, Comput. Chem. Eng. 32(2008) 715-727.[5] P.M. Verderame, J.A. Elia, J. Li, C.A. Floudas, Planning and scheduling under uncertainty:A review across multiple sectors, Ind. Eng. Chem. Res. 49(2010) 3993-4017.[6] Q. Zhang, I.E. Grossmann, R.M. Lima, On the relation between flexibility analysis and robust optimization for linear systems, AIChE J. 62(2016) 3109-3123.[7] Z. Li, R. Ding, C.A. Floudas, A comparative theoretical and computational study on robust counterpart optimization:I. Robust linear optimization and robust mixed integer linear optimization, Ind. Eng. Chem. Res. 50(2011) 10567-10603.[8] Z. Li, C.A. Floudas, A comparative theoretical and computational study on robust counterpart optimization:Ⅱ. Probabilistic guarantees on constraint satisfaction, Ind. Eng. Chem. Res. 51(2012) 6769-6788.[9] Z. Li, C.A. Floudas, A comparative theoretical and computational study on robust counterpart optimization:Ⅲ. Improving the quality of robust solutions, Ind. Eng. Chem. Res. 53(2014) 13112-13124.[10] Y.A. Guzman, L.R. Matthews, C.A. Floudas, New a priori and a posteriori probabilistic bounds for robust counterpart optimization:I. Unknown probability distributions, Comput. Chem. Eng. 84(2016) 568-598.[11] Y.A. Guzman, L.R. Matthews, C.A. Floudas, New a priori and a posteriori probabilistic bounds for robust counterpart optimization:Ⅱ. A priori bounds for known symmetric and asymmetric probability distributions, Comput. Chem. Eng. 101(2017) 279-311.[12] Y.A. Guzman, L.R. Matthews, C.A. Floudas, New a priori and a posteriori probabilistic bounds for robust counterpart optimization:Ⅲ. Exact and near-exact a posteriori expressions for known probability distributions, Comput. Chem. Eng. 103(2017) 116-143.[13] Y. Zhang, Y. Feng, G. Rong, New robust optimization approach induced by flexible uncertainty set:Optimization under continuous uncertainty, Ind. Eng. Chem. Res. 56(2017) 270-287.[14] Y. Yuan, Z. Li, B. Huang, Robust optimization under correlated uncertainty:Formulations and computational study, Comput. Chem. Eng. 85(2016) 58-71.[15] D. Bertsimas, M. Sim, The Price of Robustness, Oper. Res. 52(2004) 35-53.[16] D. Bertsimas, M. Sim, Robust discrete optimization and network flows, Math. Program. 98(2003) 49-71.[17] B. Zeng, L. Zhao, Solving two-stage robust optimization problems using a columnand-constraint generation method, Oper. Res. Lett. 41(2013) 457-461.[18] S.L. Janak, X. Lin, C.A. Floudas, A new robust optimization approach for scheduling under uncertainty, Comput. Chem. Eng. 31(2007) 171-195.[19] Z. Li, M.G. Ierapetritou, Robust optimization for process scheduling under uncertainty, Ind. Eng. Chem. Res. 47(2008) 4148-4157.[20] M.G. Ierapetritou, Z. Jia, Short-term scheduling of chemical process including uncertainty, Control. Eng. Pract. 15(2007) 1207-1221.[21] P.M. Verderame, C.A. Floudas, Operational planning of large-scale industrial batch plants under demand due date and amount uncertainty. I. Robust optimization framework, Ind. Eng. Chem. Res. 48(2009) 7214-7231.[22] P.M. Verderame, C.A. Floudas, Integration of operational planning and medium-term scheduling for large-scale industrial batch plants under demand and processing time uncertainty, Ind. Eng. Chem. Res. 49(2010) 4948-4965.[23] P.M. Verderame, C.A. Floudas, Multisite planning under demand and transportation time uncertainty:Robust optimization and conditional value-at-risk frameworks, Ind. Eng. Chem. Res. 50(2011) 4959-4982.[24] J. Li, R. Misener, C.A. Floudas, Scheduling of crude oil operations under demand uncertainty:A robust optimization framework coupled with global optimization, AIChE J. 58(2012) 2373-2396.[25] M. Wittmann-Hohlbein, E.N. Pistikopoulos, Proactive scheduling of batch processes by a combined robust optimization and multiparametric programming approach, AIChE J. 59(2013) 4184-4211.[26] K. Tong, F. You, G. Rong, Robust design and operations of hydrocarbon biofuel supply chain integrating with existing petroleum refineries considering unit cost objective, Comput. Chem. Eng. 68(2014) 128-139.[27] Q. Zhang, I.E. Grossmann, C.F. Heuberger, A. Sundaramoorthy, J.M. Pinto, Air separation with cryogenic energy storage:Optimal scheduling considering electric energy and reserve markets, AIChE J. 61(2015) 1547-1558.[28] Q. Zhang, M.F. Morari, I.E. Grossmann, A. Sundaramoorthy, J.M. Pinto, An adjustable robust optimization approach to scheduling of continuous industrial processes providing interruptible load, Comput. Chem. Eng. 86(2016) 106-119.[29] H. Shi, F. You, A computational framework and solution algorithms for two-stage adaptive robust scheduling of batch manufacturing processes under uncertainty, AIChE J. 62(2016) 687-703.[30] J. Gong, D.J. Garcia, F. You, Unraveling optimal biomass processing routes from bioconversion product and process networks under uncertainty:An adaptive robust optimization approach, ACS Sustain. Chem. Eng. 4(2016) 3160-3173.[31] N.H. Lappas, C.E. Gounaris, Multi-stage adjustable robust optimization for process scheduling under uncertainty, AIChE J. 62(2016) 1646-1667.[32] J. Gong, F. You, Optimal processing network design under uncertainty for producing fuels and value-added bioproducts from microalgae:Two-stage adaptive robust mixed integer fractional programming model and computationally efficient solution algorithm, AIChE J. 63(2017) 582-600.[33] C. Ning, F. You, Data-driven adaptive nested robust optimization:General modeling framework and efficient computational algorithm for decision making under uncertainty, AIChE J. 63(2017) 3730-3817.[34] J.R. Birge, F. Louveaux, Introduction to stochastic programming, Springer Science & Business Media, 2011.[35] R.M. Apap, I.E. Grossmann, Models and computational strategies for multistage stochastic programming under endogenous and exogenous uncertainties, Comput. Chem. Eng. 103(2017) 233-274.[36] J. Gao, F. You, Deciphering and handling uncertainty in shale gas supply chain design and optimization:Novel modeling framework and computationally efficient solution algorithm, AIChE J. 61(2015) 3739-3755.[37] B.H. Gebreslassie, Y. Yao, F. You, Design under uncertainty of hydrocarbon biorefinery supply chains:Multiobjective stochastic programming models, decomposition algorithm, and a comparison between CVaR and downside risk, AIChE J. 58(2012) 2155-2179.[38] K. Tong, Y. Feng, G. Rong, Planning under demand and yield uncertainties in an oil supply chain, Ind. Eng. Chem. Res. 51(2012) 814-834.[39] F. You, I.E. Grossmann, Multicut Benders decomposition algorithm for process supply chain planning under uncertainty, Ann. Oper. Res. 210(2011) 191-211.[40] F. You, J.M. Wassick, I.E. Grossmann, Risk management for a global supply chain planning under uncertainty:Models and algorithms, AIChE J. 55(2009) 931-946.[41] S. Baptista, M. Isabel Gomes, A.P. Barbosa-Povoa, A two-stage stochastic model for the design and planning of a multi-product closed loop supply chain, in:B. Ian David Lockhart, F. Michael (Eds.), Computer Aided Chemical Engineering, Elsevier, Amsterdam 2012, pp. 412-416.[42] F. Oliveira, V. Gupta, S. Hamacher, I.E. Grossmann, A Lagrangean decomposition approach for oil supply chain investment planning under uncertainty with risk considerations, Comput. Chem. Eng. 50(2013) 184-195.[43] V. Gupta, I.E. Grossmann, Solution strategies for multistage stochastic programming with endogenous uncertainties, Comput. Chem. Eng. 35(2011) 2235-2247.[44] B. Tarhan, I.E. Grossmann, A multistage stochastic programming approach with strategies for uncertainty reduction in the synthesis of process networks with uncertain yields, Comput. Chem. Eng. 32(2008) 766-788.[45] V. Goel, I.E. Grossmann, A class of stochastic programs with decision dependent uncertainty, Math. Program. 108(2006) 355-394.[46] J. Steimel, S. Engell, Conceptual design and optimization of chemical processes under uncertainty by two-stage programming, Comput. Chem. Eng. 81(2015) 200-217.[47] J. Steimel, M. Harrmann, G. Schembecker, S. Engell, Model-based conceptual design and optimization tool support for the early stage development of chemical processes under uncertainty, Comput. Chem. Eng. 59(2013) 63-73.[48] J. Steimel, S. Engell, Optimization-based support for process design under uncertainty:A case study, AIChE J. 62(2016) 3404-3419 Amsterdam.[49] V. Gupta, I.E. Grossmann, Multistage stochastic programming approach for offshore oilfield infrastructure planning under production sharing agreements and endogenous uncertainties, J. Pet. Sci. Eng. 124(2014) 180-197.[50] V. Gupta, I.E. Grossmann, A new decomposition algorithm for multistage stochastic programs with endogenous uncertainties, Comput. Chem. Eng. 62(2014) 62-79.[51] B. Tarhan, I.E. Grossmann, V. Goel, Stochastic programming approach for the planning of offshore oil or gas field infrastructure under decision-dependent uncertainty, Ind. Eng. Chem. Res. 48(2009) 3078-3097.[52] S. Mitra, J.M. Pinto, I.E. Grossmann, Optimal multi-scale capacity planning for power-intensive continuous processes under time-sensitive electricity prices and demand uncertainty. Part I:Modeling, Comput. Chem. Eng. 65(2014) 89-101.[53] S. Mitra, J.M. Pinto, I.E. Grossmann, Optimal multi-scale capacity planning for power-intensive continuous processes under time-sensitive electricity prices and demand uncertainty. Part Ⅱ:Enhanced hybrid bi-level decomposition, Comput. Chem. Eng. 65(2014) 102-111.[54] Z. Li, C.A. Floudas, Optimal scenario reduction framework based on distance of uncertainty distribution and output performance:I. Single reduction via mixed integer linear optimization, Comput. Chem. Eng. 70(2014) 50-66.[55] Z. Li, C.A. Floudas, Optimal scenario reduction framework based on distance of uncertainty distribution and output performance:Ⅱ. Sequential reduction, Comput. Chem. Eng. 84(2016) 599-610.[56] B.A. Calfa, A. Agarwal, I.E. Grossmann, J.M. Wassick, Data-driven multi-stage scenario tree generation via statistical property and distribution matching, Comput. Chem. Eng. 68(2014) 7-23.[57] F. Oliveira, I.E. Grossmann, S. Hamacher, Accelerating Benders stochastic decomposition for the optimization under uncertainty of the petroleum product supply chain, Comput. Oper. Res. 49(2014) 47-58.[58] A. Charnes, W.W. Cooper, Chance-constrained programming, Manag. Sci. 6(1959) 73-79.[59] Chance-constrained programming, in:S.I. Gass, M.C. Fu (Eds.), Encyclopedia of Operations Research and Management Science, Springer US, Boston, MA 2013, p. 160.[60] P. Li, H. Arellano-Garcia, G. Wozny, Chance constrained programming approach to process optimization under uncertainty, Comput. Chem. Eng. 32(2008) 25-45.[61] K. Mitra, R.D. Gudi, S.C. Patwardhan, G. Sardar, Midterm supply chain planning under uncertainty:A multiobjective chance constrained programming framework+, Ind. Eng. Chem. Res. 47(2008) 5501-5511.[62] T. Barz, G.N. Wozny, H. Arellano-Garcia, Robust implementation of optimal decisions using a two-layer chance-constrained approach, Ind. Eng. Chem. Res. 50(2011) 5050-5063.[63] J. Yang, H. Gu, G. Rong, Supply chain optimization for refinery with considerations of operation mode changeover and yield fluctuations, Ind. Eng. Chem. Res. 49(2010) 276-287.[64] M. Kloppel, A. Geletu, A. Hoffmann, P. Li, Using sparse-grid methods to improve computation efficiency in solving dynamic nonlinear chance-constrained optimization problems, Ind. Eng. Chem. Res. 50(2011) 5693-5704.[65] Y. Yuan, Z. Li, B. Huang, Robust optimization approximation for joint chance constrained optimization problem, J. Glob. Optim. 67(2016) 805-827.[66] Z. Li, Z. Li, Optimal robust optimization approximation for chance constrained optimization problem, Comput. Chem. Eng. 74(2015) 89-99.[67] B.A. Calfa, I.E. Grossmann, A. Agarwal, S.J. Bury, J.M. Wassick, Data-driven individual and joint chance-constrained optimization via kernel smoothing, Comput. Chem. Eng. 78(2015) 51-69.[68] R. Jiang, Y. Guan, Data-driven chance constrained stochastic program, Math. Program. 158(2015) 291-327.[69] Y. Zhang, Y. Feng, G. Rong, Data-driven chance constrained and robust optimization under matrix uncertainty, Ind. Eng. Chem. Res. 55(2016) 6145-6160.[70] C. Zhao, Y. Guan, Unified stochastic and robust unit commitment, IEEE Trans. Power Syst. 28(2013) 3353-3361.[71] D. Yue, F. You, Optimal supply chain design and operations under multi-scale uncertainties:Nested stochastic robust optimization modeling framework and solution algorithm, AIChE J. 62(2016) 3041-3055.[72] C. Liu, C. Lee, H. Chen, S. Mehrotra, Stochastic robust mathematical programming model for power system optimization, IEEE Trans. Power Syst. 31(2016) 821-822.[73] Y. Ye, J. Li, Z. Li, Q. Tang, X. Xiao, C.A. Floudas, Robust optimization and stochastic programming approaches for medium-term production scheduling of a large-scale steelmaking continuous casting process under demand uncertainty, Comput. Chem. Eng. 66(2014) 165-185.[74] D. Bertsimas, V. Gupta, N. Kallus, Data-driven robust optimization, Math. Program. (2017) 1-58.[75] T. Campbell, J.P. How, Bayesian nonparametric set construction for robust optimization, P Amer Contr Conf 2015, pp. 4216-4221.[76] Y. Feng, S.M. Ryan, Scenario construction and reduction applied to stochastic power generation expansion planning, Comput. Oper. Res. 40(2013) 9-23.[77] D. Xu, Z. Chen, L. Yang, Scenario tree generation approaches using K-means and LP moment matching methods, J. Comput. Appl. Math. 236(2012) 4561-4579.[78] M.I. Jordan, T.M. Mitchell, Machine learning:Trends, perspectives, and prospects, Science 349(2015) 255-260. |