[1] L. Huang, B.E. Logan, Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell, Appl. Microbiol. Biotechnol. 80(2008) 349-355.[2] B.E. Logan, J.M. Regan, Microbial fuel cells-Challenges and applications, Environ. Sci. Technol. 40(2006) 5172-5180.[3] B. Min, J. Kim, S. Oh, J.M. Regan, B.E. Logan, Electricity generation from swine wastewater using microbial fuel cells, Water Res. 39(2005) 4961-4968.[4] H. Liu, R. Ramnarayanan, B.E. Logan, Production of electricity during wastewater treatment using a single chamber microbial fuel cell, Environ. Sci. Technol. 38(2004)2281-2285.[5] B.E. Logan, B. Hamelers, R. Rozendal, U. Schroder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, K. Rabaey, Microbial fuel cells:Methodology and technology, Environ. Sci. Technol. 40(2006) 5181-5192.[6] S. Cheng, H. Liu, B.E. Logan, Increased performance of single-chamber microbial fuel cells using an improved cathode structure, Electrochem. Commun. 8(2006) 489-494.[7] S. Cheng, H. Liu, B.E. Logan, Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells, Environ. Sci. Technol. 40(2006) 364-369.[8] X.-W. Liu, W.-W. Li, H.-Q. Yu, Cathodic catalysts in bioelectrochemical systems for energy recovery from wastewater, Chem. Soc. Rev. 43(2014) 7718-7745.[9] Z. Wen, S. Ci, S. Mao, S. Cui, G. Lu, K. Yu, S. Luo, Z. He, J. Chen, TiO2 nanoparticlesdecorated carbon nanotubes for significantly improved bioelectricity generation in microbial fuel cells, J. Power Sources 234(2013) 100-106.[10] Z.-S. Wu, S. Yang, Y. Sun, K. Parvez, X. Feng, K. Müllen, 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction, J. Am. Chem. Soc. 134(2012) 9082-9085.[11] F. Zhao, F. Harnisch, U. Schroder, F. Scholz, P. Bogdanoff, I. Herrmann, Application of pyrolysed iron (Ⅱ) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathodematerialsin microbial fuelcells, Electrochem. Commun. 7(2005) 1405-1410.[12] Y. Zhang, L. Yu, D. Wu, L. Huang, P. Zhou, X. Quan, G. Chen, Dependency of simultaneous Cr(VI), Cu(Ⅱ) and Cd(Ⅱ) reduction on the cathodes of microbial electrolysis cells self-driven by microbial fuel cells, J. Power Sources 273(2015) 1103-1113.[13] Q. Chen, J. Li, X. Li, K. Huang, B. Zhou, W. Cai, W. Shangguan, Visible-light responsive photocatalytic fuel cell based on WO3/W photoanode and Cu2O/Cu photocathode for simultaneous wastewater treatment and electricity generation, Environ. Sci. Technol. 46(2012) 11451-11458.[14] Z. Zhang, P. Wang, Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy, J. Mater. Chem. 22(2012)2456-2464.[15] K.M. Cho, K.H. Kim, H.O. Choi, H.-T. Jung, A highly photoactive, visible-light-driven graphene/2D mesoporous TiO2 photocatalyst, Green Chem. 17(2015) 3972-3978.[16] Y. Cui, J. Briscoe, S. Dunn, Effect of ferroelectricity on solar-light-driven photocatalytic activity of BaTiO3-Influence on the carrier separation and stern layer formation, Chem. Mater. 25(2013) 4215-4223.[17] R.K. Nath, M. Zain, A.A.H. Kadhum, Artificial photosynthesis using LiNbO3 as photocatalyst for sustainable and environmental friendly construction and reduction of global warming:A review, Catal. Rev. 56(2014) 175-186.[18] R.K. Nath, M. Zain, A.A.H. Kadhum, A. Kaish, An investigation of LiNbO3 photocatalyst coating on concrete surface for improving indoor air quality, Constr. Build. Mater. 54(2014) 348-353.[19] E. Gutmann, A. Benke, K. Gerth, H. Bottcher, E. Mehner, C. Klein, U. Krause-Buchholz, U. Bergmann, W. Pompe, D.C. Meyer, Pyroelectrocatalytic disinfection using the pyroelectric effect of nano-and microcrystalline LiNbO3 and LiTaO3 particles, J. Phys. Chem. C 116(2012) 5383-5393.[20] M.A. Khan, M.A. Nadeem, H. Idriss, Ferroelectric polarization effect on surface chemistry and photo-catalytic activity:A review, Surf. Sci. Rep. 71(2016) 1-31.[21] L. Li, P.A. Salvador, G.S. Rohrer, Photocatalysts with internal electric fields, Nano 6(2014)24-42.[22] J. Briscoe, S. Dunn, Piezoelectricity and ferroelectricity, Nanostructured Piezoelectric Energy Harvesters, Springer International Publishing 2014, pp. 3-17.[23] J. Scott, Applications of modern ferroelectrics, Science 315(2007) 954-959.[24] M. Stock, S. Dunn, Influence of the ferroelectric nature of lithium niobate to drive photocatalytic dye decolorization under artificial solar light, J. Phys. Chem. C 116(2012)20854-20859.[25] A.Harhira,L.Guilbert, P.Bourson,H.Rinnert,Decaytimeofpolaron photoluminescence in congruent lithium niobate, Phys. Status Solidi C 4(2007) 926-929.[26] J.L. Giocondi, G.S. Rohrer, Spatial separation of photochemical oxidation and reduction reactions on the surface of ferroelectric BaTiO3, J. Phys. Chem. B 105(2001) 8275-8277.[27] H. Kato, A. Kudo, Water splitting into H2 and O2 on alkali tantalate photocatalysts ATaO3(A=Li, Na, and K), J. Phys. Chem. B 105(2001) 4285-4292.[28] H. Kato, A. Kudo, Photocatalytic reduction of nitrate ions over tantalate photocatalysts, Phys. Chem. Chem. Phys. 4(2002)2833-2838.[29] H. Kato, A. Kudo, Photocatalytic water splitting into H2 and O2 over various tantalate photocatalysts, Catal. Today 78(2003) 561-569.[30] P. Zhang, J. Zhang, J. Gong, Tantalum-based semiconductors for solar water splitting, Chem. Soc. Rev. 43(2014) 4395-4422.[31] Y. Shimodaira, H. Kato, H. Kobayashi, A. Kudo, Photophysical properties and photocatalytic activities of bismuth molybdates under visible light irradiation, J. Phys. Chem. B 110(2006) 17790-17797.[32] T. Arai, M. Yanagida, Y. Konishi, H. Sugihara, K. Sayama, Utilization of Fe3+/Fe2+ redox for the photodegradation of organic substances over WO3 photocatalyst and for H2 production from the electrolysis of water, Electrochemistry 76(2008) 128-131.[33] F. Hernández-Fernández, A.P. de los Rios, F. Mateo-Ramirez, C. Godinez, L. LozanoBlanco, J. Moreno, F. Tomás-Alonso, New application of supported ionic liquids membranes as proton exchange membranes in microbial fuel cell for waste water treatment, Chem. Eng. J. 279(2015) 115-119.[34] APHA, Standard methods for the examination of water and wastewater, 21st ed. American Public Health Association, Washington, DC, New York, 2005.[35] A. Larrosa-Guerrero, K. Scott, I. Head, F. Mateo, A. Ginesta, C. Godinez, Effect of temperature on the performance of microbial fuel cells, Fuel 89(2010) 3985-3994.[36] G. Blasse, Crystal structure of some LiMe5+Me6+O6 compounds, J. Inorg. Nucl. Chem. 32(1970) 3960-3961.[37] M. Wiegel, M. Emond, T. De Bruin, G. Blasse, Nonlinear optical properties and luminescence of solid solutions of Li1-x(Nb,Ta)1-xWxO3, Chem. Mater. 6(1994) 973-976.[38] B. Elouadi, E. Lotfi, L. Delmotte, J. Chezeau, Crystal chemical dielectric and NMR studies of solid solutions isolated close to LiTaO3 inside the ternary system Li2O-Ta2O5-(WO3)2, Ferroelectrics 157(1994) 177-182.[39] J. Ravez, G. Joo, J. Senegas, P. Hagenmuller, The ferroelectric non-stoichiometric LiTaO3-type phases, Jpn. J. Appl. Phys. 24(1985) 1000.[40] S. Kawakami, A. Tsuzuki, T. Sekiya, T. Ishikuro, M. Masuda, Y. Torii, Structural and dielectric properties in the system LiTaO3-WO3, Mater. Res. Bull. 20(1985) 1435-1440.[41] G.J.d.A. Soler-Illia, C. Sanchez, B. Lebeau, J. Patarin, Chemical strategies to design textured materials:From microporous and mesoporous oxides to nanonetworks and hierarchical structures, Chem. Rev. 102(2002) 4093-4138.[42] C. Baron, H. Cheng, M.C. Gupta, Domain inversion in LiTaO3 and LiNbO3 by electric field application on chemically patterned crystals, Appl. Phys. Lett. 68(1996) 481-483.[43] F. Zhao, F. Harnisch, U. Schroder, F. Scholz, P. Bogdanoff, I. Herrmann, Challenges and constraints of using oxygen cathodes in microbial fuel cells, Environ. Sci. Technol. 40(2006) 5193-5199.[44] N. Touach, V. Ortiz-Martinez, M. Salar-Garcia, A. Benzaouak, F. Hernández Fernández, A. de los Rios, N. Labjar, S. Louki, M. El Mahi, E. Lotfi, Influence of the preparation method of MnO2-based cathodeson theperformance ofsingle-chamber MFCs using wastewater, Sep. Purif. Technol. 171(2016) 174-181. |