[1] T.K. Tokunaga, K.R. Olson, J. Wan, Conditions necessary for capillary hysteresis in porous media:Tests of grain size and surface tension influences, Water Resour. Res. 40(2004), W05111.
[2] G.R. Jerauld, S.J. Salter, The effect of pore-structure on hysteresis in relative permeability and capillary pressure:Pore-level modeling, Transp. Porous Media 5(1990) 103-151.
[3] R.T. Armstrong, M.L. Porter, D. Wildenschild, Linking pore-scale interfacial curvature to column-scale capillary pressure, Adv. Water Resour. 46(2012) 55-62.
[4] E.C. Kumbur, K.V. Sharp, M.M. Mench, On the effectiveness of Leverett approach for describing the water transport in fuel cell diffusion media, J. Power Sources 168(2007) 356-368.
[5] E.C. Kumbur, K.V. Sharp, M.M. Mench, Validated Leverett approach for multiphase flow in PEFC diffusion media Ⅲ. Temperature effect and unified approach, J. Electrochem. Soc. 154(12) (2007) B1315-B1324.
[6] W.H. Green, G.A. Ampt, Studies on soil physics, J. Agric. Sci. (Camb.) 4(1911) 1-24.
[7] R. Lucas, Rate of capillary ascension of liquids, Kolloid Z. 23(15) (1918) 15-22.
[8] E.W. Washburn, The dynamics of capillary flow, Phys. Rev. 17(1921) 273-283.
[9] R. Masoodi, E. Languri, A. Ostadhossein, Dynamics of liquid rise in a vertical capillary tube, J. Colloid Interface Sci. 389(2013) 268-272.
[10] N. Fries, M. Dreyer, An analytic solution of capillary rise restrained by gravity, J. Colloid Interface Sci. 320(2008) 259-263.
[11] M. Lago, M. Araujo, Capillary rise in porous media, J. Colloid Interface Sci. 234(2001) 35-43.
[12] A. Siebold, M. Nardin, J. Schultz, A. Walliser, M. Oppliger, Effect of dynamic contact angle on capillary rise phenomena, Colloids Surf. A Physicochem. Eng. Asp. 161(2000) 81-87.
[13] N. Fries, Capillary transport processes in porous materials-experiment and model, (PhD Thesis) Cuvillier Verlag Göttingen, 2010.
[14] B.V. Zhmud, F. Tiberg, K. Hallstensson, Dynamics of capillary rise, J. Colloid Interface Sci. 228(2000) 263-269.
[15] M. Prat, On the influence of pore shape, contact angle and film flows on drying of capillary porous media, Int. J. Heat Mass Transf. 50(2007) 1455-1468.
[16] L.A. Segura, P.G. Toledo, Pore-level modeling of isothermal drying of pore networks:Effects of gravity and pore shape and size distributions on saturation and transport parameters, Chem. Eng. J. 111(2) (2005) 237-252.
[17] H. Wong, S. Morris, C.J. Radke, Three-dimensional menisci in polygonal capillaries, J. Colloid Interface Sci. 148(2) (1992) 317-336.
[18] G. Mason, N.R. Morrow, Meniscus curvatures in capillaries of uniform cross-section, J. Chem. Soc. Faraday Trans. 180(9) (1984) 2375-2393.
[19] A. Ishakoglu, A.F. Baytas, The influence of contact angle on capillary pressure-saturation relations in a porous medium including various liquids, Int. J. Eng. Sci. 43(2005) 744-755.
[20] Y.C. Tang, J.C. Min, X.M. Wu, Selection of convective moisture transfer driving potential and its impacts upon porous plate air-drying characteristics, Int. J. Heat Mass Transf. 116(2018) 371-376.
[21] J.C. Min, R.L. Webb, Condensate formation and drainage on typical fin materials, Exp. Thermal Fluid Sci. 25(3-4) (2001) 101-111.
[22] J.C. Min, R.L. Webb, Condensate carryover phenomena in dehumidifying finned tube heat exchangers, Exp. Thermal Fluid Sci. 22(3-4) (2000) 175-182.
[23] J.C. Min, R.L. Webb, H. Bemisderfer, Long-term hydraulic performance of dehumidifying heat-exchangers with and without hydrophilic coating, Int. J. HVAC&R Res. 6(3) (2000) 257-272.
[24] J.C. Min, X.M. Wu, L.F. Shen, F. Gao, Hydrophilic treatment and performance evaluation of copper finned tube evaporators, Appl. Therm. Eng. 31(14-15) (2011) 2936-2942.
[25] R. Masoodi, K.M. Pillai, A general formula for capillary suction-pressure in porous media, J. Porous Media 15(8) (2012) 775-783.
[26] E. Jettestuen, J.O. Helland, M. Prodanovi?, A level set method for simulating capillary-controlled displacements at the pore scale with nonzero contact angles, Water Resour. Res. 49(2013) 4645-4661.
[27] H.S. Suh, D.H. Kang, J. Jang, K.Y. Kim, T.S. Yun, Capillary pressure at irregularly shaped pore throats:Implications for water retention characteristics, Adv. Water Resour. 110(2017) 51-58.
[28] R. Sivanesapillai, N. Falkner, A. Hartmaier, H. Steeb, A CSF-SPH method for simulating drainage and imbibition at pore-scale resolution while tracking interfacial areas, Adv. Water Resour. 95(2016) 212-234.
[29] C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys. 39(1) (1981) 201-225.
[30] J.E. Pilliod Jr., E.G. Puckett, Second-order accurate volume-of-fluid algorithms for tracking material interfaces, J. Comput. Phys. 199(2) (2004) 465-502.
[31] S. Balachandran, Surfactant analysis of thin liquid film in the human trachea via application of volume of fluid (VOF), fluid dynamics, Comput. Model. Appl. (2012) 449-462.
[32] K. Samarpana, A. Konapala, D. Ramesh, Computational investigation of free surface flow around a ship hull, Int. J. Appl. Innov. Eng. Manag. 2(5) (2013) 98-107.
[33] D.L. Youngs, Time-dependent multi-material flow with large fluid distortion, Numer. Methods Fluid Dyn. 24(2) (1982) 273-285.
[34] J.U. Brackbill, D.B. Kothe, C. Zemach, A continuum method for modeling surface tension, J. Comput. Phys. 100(2) (1992) 335-354. |