Chin.J.Chem.Eng. ›› 2018, Vol. 26 ›› Issue (12): 2523-2530.DOI: 10.1016/j.cjche.2018.05.014
• Separation Science and Engineering • Previous Articles Next Articles
Na Zhou1, Yan Du2, Chunyu Wang2, Rizhi Chen1
Received:
2018-03-20
Revised:
2018-05-21
Online:
2019-01-09
Published:
2018-12-28
Contact:
Yan Du, Rizhi Chen
Supported by:
Supported by the National Key R&D Program of China (2016YFB0301503), the National Natural Science Foundation of China (91534110, 21776127), the Jiangsu Province Natural Science Foundation for Distinguished Young Scholars (BK20150044), and the Jiangsu Province Natural Science Foundation (BK20160978).
Na Zhou1, Yan Du2, Chunyu Wang2, Rizhi Chen1
通讯作者:
Yan Du, Rizhi Chen
基金资助:
Supported by the National Key R&D Program of China (2016YFB0301503), the National Natural Science Foundation of China (91534110, 21776127), the Jiangsu Province Natural Science Foundation for Distinguished Young Scholars (BK20150044), and the Jiangsu Province Natural Science Foundation (BK20160978).
Na Zhou, Yan Du, Chunyu Wang, Rizhi Chen. Facile synthesis of hierarchically porous carbons by controlling the initial oxygen concentration in-situ carbonization of ZIF-8 for efficient water treatment[J]. Chin.J.Chem.Eng., 2018, 26(12): 2523-2530.
Na Zhou, Yan Du, Chunyu Wang, Rizhi Chen. Facile synthesis of hierarchically porous carbons by controlling the initial oxygen concentration in-situ carbonization of ZIF-8 for efficient water treatment[J]. Chinese Journal of Chemical Engineering, 2018, 26(12): 2523-2530.
[1] D.Y. Lee, G.H. An, H.J. Ahn, High-surface-area tofu based activated porous carbon for electrical double-layer capacitors, J. Ind. Eng. Chem. 52(2017) 121-127. [2] J. Li, Q.L. Zhu, Q. Xu, Pd nanoparticles supported on hierarchically porous carbons derived from assembled nanoparticles of a zeolitic imidazolate framework (ZIF-8) for methanol electrooxidation, Chem. Commun. 51(54) (2015) 10827-10830. [3] A.M. Rashidi, D. Kazemi, N. Izadi, M. Pourkhalil, A. Jorsaraei, E. Ganji, R. Lotfi, Preparation of nanoporous activated carbon and its application as nano adsorbent for CO2 storage, Korean J. Chem. Eng. 33(2) (2016) 616-622. [4] K.M. Park, H.G. Nam, K.B. Lee, S. Mun, Adsorption behaviors of sugars and sulfuric acid on activated porous carbon, J. Ind. Eng. Chem. 34(2016) 21-26. [5] M.B. Ansari, B.H. Min, Y.H. Mo, S.E. Park, CO2 activation and promotional effect in the oxidation of cyclic olefins over mesoporous carbon nitrides, Green Chem. 13(6) (2011) 1416-1421. [6] S. Cheng, L.B. Zhang, H.Y. Xia, S.Z. Zhang, J.H. Peng, S.X. Wang, Crofton weed derived activated carbon by microwave-induced KOH activation and application to wastewater treatment, J. Porous. Mater. 23(6) (2016) 1597-1607. [7] D. Ye, Y. Yu, J. Tang, L. Liu, Y. Wu, Electrochemical activation of carbon cloth in aqueous inorganic salt solution for superior capacitive performance, Nano 8(19) (2016) 10406-10414. [8] H.B. Xu, G.S. Xia, H.N. Liu, S.W. Xia, Y.H. Lu, Electrochemical activation of commercial polyacrylonitrile-based carbon fiber for the oxygen reduction reaction, Phys. Chem. Chem. Phys. 17(12) (2015) 7707-7713. [9] W. Ai, X.W. Wang, C.J. Zou, Z.Z. Du, Z.X. Fan, H. Zhang, P. Chen, T. Yu, W. Huang, Molecular-level design of hierarchically porous carbons co-doped with nitrogen and phosphorus capable of in situ self-activation for sustainable energy systems, Small 13(8) (2017), 1602010. [10] K.S. Park, Z. Ni, A.P. Cote, J.Y. Choi, R.D. Huang, F.J. Uribe-Romo, H.K. Chae, M. O'Keeffe, O.M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, Proc. Natl. Acad. Sci. U. S. A. 103(27) (2006) 10186-10191. [11] Y.C. Pan, Y.Y. Liu, G.F. Zeng, L. Zhao, Z.P. Lai, Rapid synthesis of zeolitic imidazolate framework-8(ZIF-8) nanocrystals in an aqueous system, Chem. Commun. 47(7) (2011) 2071-2073. [12] T. Zhang, X.F. Zhang, X.J. Yan, L. Lin, H.O. Liu, J.S. Qiu, K.L. Yeung, Core-shell Pd/ZSM-5@ZIF-8 membrane micro-reactors with size selectivity properties for alkene hydrogenation, Catal. Today 236(2014) 41-48. [13] S.S. Ding, C.H. Zhang, Y.F. Liu, H. Jiang, W.H. Xing, R.Z. Chen, Pd nanoparticles supported on N-doped porous carbons derived from ZIF-67:Enhanced catalytic performance in phenol hydrogenation, J. Ind. Eng. Chem. 46(2017) 258-265. [14] Y.W. Chen, D.F. Lv, J.L. Wu, J. Xiao, H.X. Xi, Q.B. Xia, Z. Li, A new MOF-505@GO composite with high selectivity for CO2/CH4 and CO2/N-2 separation, Chem. Eng. J. 308(2017) 1065-1072. [15] N. Bakhtiari, S. Azizian, S.M. Alshehri, N.L. Torad, V. Malgras, Y. Yamauchi, Study on adsorption of copper ion from aqueous solution by MOF-derived nanoporous carbon, Microporous Mesoporous Mater. 217(2015) 173-177. [16] S.Q. Li, X.D. Zhang, Y.M. Huang, Zeolitic imidazolate framework-8 derived nanoporous carbon as an effective and recyclable adsorbent for removal of ciprofloxacin antibiotics from water, J. Hazard. Mater. 321(2017) 711-719. [17] L.K. Wang, Z.H. Tang, W. Yan, Q.N. Wang, H.Y. Yang, S.W. Chen, Co@Pt core@shell nanoparticles encapsulated in porous carbon derived from zeolitic imidazolate framework 67 for oxygen electroreduction in alkaline media, J. Power Sources 343(2017) 458-466. [18] T. Zeng, M.D. Yu, H.Y. Zhang, Z.Q. He, J.M. Chen, S. Song, Fe/Fe3C@N-doped porous carbon hybrids derived from nano-scale MOFs:Robust and enhanced heterogeneous catalyst for peroxymonosulfate activation, Catal. Sci. Technol. 7(2) (2017) 396-404. [19] J.D. Xiao, L.G. Qiu, X. Jiang, Y.J. Zhu, S. Ye, X. Jiang, Magnetic porous carbons with high adsorption capacity synthesized by a microwave-enhanced high temperature ionothermal method from a Fe-based metal-organic framework, Carbon 59(2013) 372-382. [20] C.N. Jiao, Y.N. Wang, M.H. Li, Q.H. Wu, C. Wang, Z. Wang, Synthesis of magnetic nanoporous carbon from metal-organic framework for the fast removal of organic dye from aqueous solution, J. Magn. Magn. Mater. 407(2016) 24-30. [21] Z. Abbasi, E. Shamsaei, S.K. Leong, B. Ladewig, X.W. Zhang, H.T. Wang, Effect of carbonization temperature on adsorption property of ZIF-8 derived nanoporous carbon for water treatment, Microporous Mesoporous Mater. 236(2016) 28-37. [22] C. Young, R.R. Salunkhe, J. Tang, C.C. Hu, M. Shahabuddin, E. Yanmaz, M.S.A. Hossain, J.H. Kim, Y. Yamauchi, Zeolitic imidazolate framework (ZIF-8) derived nanoporous carbon:The effect of carbonization temperature on the supercapacitor performance in an aqueous electrolyte, Phys. Chem. Chem. Phys. 18(42) (2016) 29308-29315. [23] P. Nowicki, R. Pietrzak, H. Wachowska, Sorption properties of active carbons obtained from walnut shells by chemical and physical activation, Catal. Today 150(1-2) (2010) 107-114. [24] A.J. Romero-Anaya, M. Ouzzine, M.A. Lillo-Rodenas, A. Linares-Solano, Spherical carbons:Synthesis, characterization and activation processes, Carbon 68(2014) 296-307.ss [25] D.F. Zhang, P.L. Huo, W. Liu, Behavior of phenol adsorption on thermal modified activated carbon, Chin. J. Chem. Eng. 24(2016) 446-452. [26] A. Barroso-Bogeat, M. Alexandre-Franco, C. Fernandez-Gonzalez, A. Macias-Garcia, V. Gomez-Serrano, Temperature dependence of the electrical conductivity of activated carbons prepared from vine shoots by physical and chemical activation methods, Microporous Mesoporous Mater. 209(2015) 90-98. [27] L. Yang, T. Huang, X. Jiang, W.J. Jiang, Effect of steam and CO2 activation on characteristics and desulfurization performance of pyrolusite modified activated carbon, Adsorption 22(8) (2016) 1099-1107. [28] Q.F. Wang, W. Xia, W.H. Guo, L. An, D.G. Xia, R.Q. Zou, Functional zeolitic-imidazolateframework-templated porous carbon materials for CO2 capture and enhanced capacitors, Chem. Asian. J. 8(8) (2013) 1879-1885. [29] Y. Du, R.Z. Chen, J.F. Yao, H.T. Wang, Facile fabrication of porous ZnO by thermal treatment of zeolitic imidazolate framework-8 and its photocatalytic activity, J. Alloys Compd. 551(2013) 125-130. [30] S.S. Ding, Q. Yan, H. Jiang, Z.X. Zhong, R.Z. Chen, W.H. Xing, Fabrication of Pd@ZIF-8 catalysts with different Pd spatial distributions and their catalytic properties, Chem. Eng. J. 296(2016) 146-153. [31] N.X. Wang, T.J. Liu, H.P. Shen, S.L. Ji, J.R. Li, R. Zhang, Ceramic tubular MOF hybrid membrane fabricated through in situ layer-by-layer self-assembly for nanofiltration, AIChE J. 62(2) (2016) 538-546. [32] C.W. Tsai, E.H.G. Langner, The effect of synthesis temperature on the particle size of nano-ZIF-8, Microporous Mesoporous Mater. 221(2016) 8-13. [33] L.J. Zhang, Z.X. Su, F.L. Jiang, L.L. Yang, J.J. Qian, Y.F. Zhou, W.M. Li, M.C. Hong, Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions, Nano 6(12) (2014) 6590-6602. [34] Y.Z. Jin, Y.J. Kim, C. Gao, Y.Q. Zhu, A. Huczko, M. Endo, H.W. Kroto, High temperature annealing effects on carbon spheres and their applications as anode materials in li-ion secondary battery, Carbon 44(4) (2006) 724-729. [35] B.L. Chen, G.P. Ma, D.L. Kong, Y.Q. Zhu, Y.D. Xia, Atomically homogeneous dispersed ZnO/N-doped nanoporous carbon composites with enhanced CO2 uptake capacities and high efficient organic pollutants removal from water, Carbon 95(2015) 113-124. [36] G.L.Wang, S. Chen, X. Quan, H.T. Yu, Y.B. Zhang, Enhanced activation of peroxymonosulfate by nitrogen doped porous carbon for effective removal of organic pollutants, Carbon 115(2017) 730-739. [37] Y.W. Shi, X.W. Zhang, L. Wang, G.Z. Liu, MOF-derived porous carbon for adsorptive desulfurization, AIChE J. 60(8) (2014) 2747-2751. [38] N.L. Torad, M. Hu, S. Ishihara, H. Sukegawa, A.A. Belik, M. Imura, K. Ariga, Y. Sakka, Y. Yamauchi, Direct synthesis of MOF-derived nanoporous carbon with magnetic Co nanoparticles toward efficient water treatment, Small 10(10) (2014) 2096-2107. [39] X.F. Dai, M.J. Antal, Synthesis of a high-yield activated carbon by air gasification of macadamia nut shell charcoal, Ind. Eng. Chem. Res. 38(9) (1999) 3386-3395. [40] A. Ahmadpour, D.D. Do, The preparation of activated carbon from macadamia nutshell by chemical activation, Carbon 35(12) (1997) 1723-1732. [41] M.A. Islam, M.J. Ahmed, W.A. Khanday, M. Asif, B.H. Hameed, Mesoporous activated carbon prepared from NaOH activation of rattan (Lacosperma secundiflorum) hydrochar for methylene blue removal, Ecotoxicol. Environ. Saf. 138(2017) 279-285. |
[1] | Yingli Li, Zhishuncheng Li, Guangfei Qu, Rui Li, Shuaiyu Liang, Junhong Zhou, Wei Ji, Huiming Tang. Mechanism, behaviour and application of iron nitrate modified carbon nanotube composites for the adsorption of arsenic in aqueous solutions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 26-36. |
[2] | Jing Huang, Honghui Cai, Qian Zhao, Yunpeng Zhou, Haibo Liu, Jing Wang. Dual-functional pyrene implemented mesoporous silicon material used for the detection and adsorption of metal ions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 108-117. |
[3] | Lingli Chen, Yueting Shi, Sijun Xu, Junle Xiong, Fang Gao, Shengtao Zhang, Hongru Li. Enhanced adsorption of target branched compounds including antibiotic norfloxacin frameworks on mild steel surface for efficient protection: An experimental and molecular modelling study [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 212-227. |
[4] | Alexander Nti Kani, Evans Dovi, Aaron Albert Aryee, Runping Han, Zhaohui Li, Lingbo Qu. Mechanisms and reusability potentials of zirconium-polyaziridine-engineered tiger nut residue towards anionic pollutants [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 275-292. |
[5] | Yuan Liu, Hanting Xiong, Jingwen Chen, Shixia Chen, Zhenyu Zhou, Zheling Zeng, Shuguang Deng, Jun Wang. One-step ethylene separation from ternary C2 hydrocarbon mixture with a robust zirconium metal-organic framework [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 9-15. |
[6] | Hui Jiang, Zijian Zhao, Ning Yu, Yi Qin, Zhengwei Luo, Wenhua Geng, Jianliang Zhu. Synthesis, characterization, and performance comparison of boron using adsorbents based on N-methyl-D-glucosamine [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 16-31. |
[7] | Sufei Wang, Mengjie Hao, Danyang Xiao, Tianmiao Zhang, Hua Li, Zhongshan Chen. Synthesis of porous carbon nanomaterials and their application in tetracycline removal from aqueous solutions [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 200-209. |
[8] | Chaoyi Yin, Jingyuan Ma, Jian Qiu, Ruifang Liu, Long Ba. Mass-producible low-cost flexible electronic fabrics for azo dye wastewater treatment by electrocoagulation [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 222-230. |
[9] | Runze Chen, Yuran Chen, Xuemin Liang, Yapeng Kong, Yangyang Fan, Quan Liu, Zhenyu Yang, Feiying Tang, Johnny Muya Chabu, Maru Dessie Walle, Liqiang Wang. Oxidative exfoliation of spent cathode carbon: A two-in-one strategy for its decontamination and high-valued application [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 262-269. |
[10] | Shanghong Ma, Haitao Zhang, Jianbo Qu, Xiuzhong Zhu, Qingfei Hu, Jianyong Wang, Peng Ye, Futao Sai, Shiwei Chen. Preparation of waterborne polyurethane/β-cyclodextrin composite nanosponge by ion condensation method and its application in removing of dyes from wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 124-136. |
[11] | Bin Lin, Wenyao Chen, Nan Song, Zhihua Zhang, Qianhong Wang, Wei Du, Xinggui Zhou, Xuezhi Duan. Mechanistic insights into propylene oxidation to acrolein over gold catalysts [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 39-49. |
[12] | Xinyu Yang, Zezhi Chen, Huijuan Gong. Coking of Pt/γ-Al2O3 catalyst in landfill gas deoxygen and its effects on catalytic performance [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 224-232. |
[13] | Yueting Shi, Junhai Zhao, Lingli Chen, Hongru Li, Shengtao Zhang, Fang Gao. Double open mouse-like terpyridine parts based amphiphilic ionic molecules displaying strengthened chemical adsorption for anticorrosion of copper in sulfuric acid solution [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 233-246. |
[14] | Jian Wang, Yuanhui Shen, Donghui Zhang, Zhongli Tang, Wenbin Li. Integrated vacuum pressure swing adsorption and Rectisol process for CO2 capture from underground coal gasification syngas [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 265-279. |
[15] | Yujia Cui, Zhiqiang Tan, Yanan Wang, Shuxian Shi, Xiaonong Chen. One-step crosslinking preparation of tannic acid particles for the adsorption and separation of cationic dyes [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 309-318. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 171
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 633
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||