Chin.J.Chem.Eng. ›› 2018, Vol. 26 ›› Issue (12): 2641-2653.DOI: 10.1016/j.cjche.2018.02.029
• Materials and Product Engineering • Previous Articles Next Articles
Xianghong Li1, Shuduan Deng2, Xiaoguang Xie3
Received:
2017-12-14
Revised:
2018-02-21
Online:
2019-01-09
Published:
2018-12-28
Contact:
Xianghong Li
Supported by:
Supported by the National Natural Science Foundation of China (51361027) and the Training Program of Young and Middle Aged Academic and Technological Leaders in Yunnan Province (2015HB049).
Xianghong Li1, Shuduan Deng2, Xiaoguang Xie3
通讯作者:
Xianghong Li
基金资助:
Supported by the National Natural Science Foundation of China (51361027) and the Training Program of Young and Middle Aged Academic and Technological Leaders in Yunnan Province (2015HB049).
Xianghong Li, Shuduan Deng, Xiaoguang Xie. Red tetrazolium as an effective inhibitor for the corrosion of cold rolled steel in 7.0 mol·L-1 H2SO4 solution[J]. Chin.J.Chem.Eng., 2018, 26(12): 2641-2653.
Xianghong Li, Shuduan Deng, Xiaoguang Xie. Red tetrazolium as an effective inhibitor for the corrosion of cold rolled steel in 7.0 mol·L-1 H2SO4 solution[J]. Chinese Journal of Chemical Engineering, 2018, 26(12): 2641-2653.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2018.02.029
[1] F. Bentiss, M. Traisnel, M. Lagrenee, The substituted 1,3,4-oxadiazoles:A new class of corrosion inhibitors of mild steel in acidic media, Corros. Sci. 42(2000) 127-146.[2] M. Finsgar, J. Jackson, Application of corrosion inhibitors for steels in acidic media for the oil and gas industry, Corros. Sci. 86(2014) 17-41.[3] A. Dutta, S.Kr. Saha, U. Adhikari, P. Banerjee, D. Sukul, Effect of substitution on corrosion inhibition properties of 2-(substituted phenyl) benzimidazole derivatives on mild steel in 1 M HCl solution:A combined experimental and theoretical approach, Corros. Sci. 123(2017) 256-266.[4] S. Kertit, B. Hammouti, Corrosion inhibition of iron 1 mol·L-1 HCl by 1-phenyl-5-mercapto-1,2,3,4-tetrazole, Appl. Surf. Sci. 93(1996) 59-66.[5] E. Bensajjay, S. Alehyen, M. El Achouri, S. Kertit, Corrosion inhibition of steel by 1-phenyl-5-mercapto 1,2,3,4-tetrazole in acidic environments (0.5 M H2SO4 and 1/3 M H3PO4), Anti-Corros. Methods Mater. 50(2003) 402-409.[6] P. Morales-Gil, G. Negron-Silva, M. Romero-Romoa, C. Angeles-Chavez, M. PalomarPardave, Corrosion inhibition of pipeline steel grade API 5L X52 immersed in 1 M H2SO4 aqueous solution using heterocyclic organic molecules, Electrochim. Acta 49(2004) 4733-4741.[7] X.H. Li, S.D. Deng, H. Fu, Corrosion inhibition of red tetrazolium for cold rolled steel in hydrochloric acid media, Chin. J. Appl. Chem. 26(2009) 1075-1079(in Chinese).[8] X.H. Li, S.D. Deng, H. Fu, Synergism between red tetrazolium and uracil on the corrosion of cold rolled steel in H2SO4 solution, Corros. Sci. 51(2009) 1344-1355.[9] X.H. Li, S.D. Deng, H. Fu, Synergistic inhibition effect of red tetrazolium and uracil on the corrosion of cold rolled steel in H3PO4 solution:Weight loss, electrochemical, and AFM approaches, Mater. Chem. Phys. 115(2009) 815-824.[10] X.H. Li, S.D. Deng, H. Fu, Blue tetrazolium as a novel corrosion inhibitor for cold rolled steel in hydrochloric acid solution, Corros. Sci. 52(2010) 2786-2792.[11] X.H. Li, S.D. Deng, H. Fu, Blue tetrazolium as a novel corrosion inhibitor for cold rolled steel in sulfuric acid solution, Mater. Chem. Phys. 129(2011) 696-700.[12] S.D. Deng, X.H. Li, H. Fu, Nitrotetrazolium blue chloride as a novel corrosion inhibitor of steel in sulfuric acid solution, Corros. Sci. 52(2010) 3840-3846.[13] X.H. Li, S.D. Deng, H. Fu, Inhibition effect of nitrotetrazolium blue chloride on the corrosion of steel in hydrochloric acid solutions, Acta Phys.-Chim. Sin. 53(2011) 302-309.[14] X.H. Li, S.D. Deng, H. Fu, Triazolyl blue tetrazolium bromide as a novel corrosion inhibitor for steel in HCl and H2SO4 solutions, Corros. Sci. 53(2011) 302-309.[15] Z. Panossian, N.L. de Almeida, R.M.F. de Sousa, G.de S. Pimenta, L.B.S. Marques, Corrosion of carbon steel pipes and tanks by concentrated sulfuric acid:A review, Corros. Sci. 58(2012) 1-11.[16] X. Wang, Y. Gao, K. Li, J. Yang, Y. Li, J. Feng, Effect of yttrium on the corrosion behaviour of 09CrCuSb alloy in concentrated sulphuric acid, Corros. Sci. 69(2013) 369-375.[17] M.A. Amin, M.M. Ibrahim, Corrosion and corrosion control of mild steel in concentrated H2SO4 solutions by a newly synthesized glycine derivative, Corros. Sci. 53(2011) 873-885.[18] S.S. Abdel Rehim, O.A. Hazzazi, M.A. Amin, K.F. Khaled, On the corrosion inhibition of low carbon steel in concentrated sulphuric acid solutions. Part I:Chemical and electrochemical (AC and DC) studies, Corros. Sci. 50(2008) 2258-2271.[19] Materials Studio 4.0., Accelrys Inc., San Diego, CA, 2005.[20] X.H. Li, X.G. Xie, S.D. Deng, G.B. Du, Two phenylpyrimidine derivatives as new corrosion inhibitors for cold rolled steel in hydrochloric acid solution, Corros. Sci. 87(2014) 27-39.[21] X.H. Li, X.G. Xie, S.D. Deng, G.B. Du, Inhibition effect of two mercaptopyrimidine derivatives on cold rolled steel in HCl solution, Corros. Sci. 92(2015) 136-147.[22] J. Radilla, G.E. Negron-Silva, M. Palomar-Pardave, M. Romero-Romo, M. Galvan, DFT study of the adsorption of the corrosion inhibitor2-mercaptoimidazole onto Fe(100) surface, Electrochim. Acta 112(2013) 577-586.[23] D. Wang, L. Gao, D. Zhang, D. Yang, H. Wang, T. Lin, Experimental and theoretical investigation on corrosion inhibition of AA5052 aluminium alloy by L-cysteine in alkaline solution, Mater. Chem. Phys. 169(2016) 142-151.[24] N. Kovacevic, I. Milosev, A. Kokalj, How relevant is the adsorption bonding of imidazoles and triazoles for their corrosion inhibition of copper? Corros. Sci. 124(2017) 25-34.[25] X.H. Li, S.D. Deng, H. Fu, T.H. Li, Adsorption and inhibition effect of 6-benzylaminopurine on cold rolled steel in 1.0 mol·L-1 HCl, Electrochim. Acta 54(2009) 4089-4098.[26] Z. Salarvand, M. Amirnasr, M. Talebian, K. Raeissi, S. Meghdadi, Enhanced corrosion resistance of mild steel in 1 mol·L-1 HCl solution by trace amount of 2-phenylbenzothiazole derivatives:Experimental, quantum chemical calculations and molecular dynamics (MD)simulation studies, Corros. Sci. 114(2017) 133-145.[27] R. Fuchs-Godec, V. Dolecek, A effect of sodium dodecylsulfate on the corrosion of copper in sulphuric acid media, Colloids Surf. A Physicochem. Eng. Asp. 244(2004) 73-76.[28] M.V. Fiori-Bimbi, P.E. Alvarez, H. Vaca, C.A. Gervasi, Corrosion inhibition of mild steel in HCL solution by pectin, Corros. Sci. 92(2015) 192-199.[29] A.P. Hanza, R. Naderi, E. Kowsari, M. Sayebani, Corrosion behavior of mild steel in H2SO4 solution with 1,4-di[1-methylene-3-methyl imidazolium bromide]-benzene as an ionic liquid, Corros. Sci. 107(2016) 96-106.[30] J. Banas, B. Mazurkiewicz, B. Stypula, Passivity of metals in concentrated and anhydrous solutions of sulphuric acid, Electrochim. Acta 37(1992) 1069-1073.[31] J.R. Kish, M.B. Ives, J.R. Rodda, Anodic behaviour of stainless steel S43000 in concentrated solutions of sulphuric acid, Corros. Sci. 45(2003) 1571-1594.[32] M.A. Amin, K.F. Khaled, S.A. Fadl-Allah, Testing validity of the Tafel extrapolation method for monitoring corrosion of cold rolled steel in HCl solutions-Experimental and theoretical studies, Corros. Sci. 52(2010) 140-151.[33] Z.A. Abdallah, M.S.M. Ahmed, M.M. Saleh, Organic synthesis and inhibition action of novel hydrazide derivative for mild steel corrosion in acid solutions, Mater. Chem. Phys. 174(2016) 91-99.[34] B.P. Markhali, R. Naderi, M. Mahdavian, M. Sayebani, S.Y. Arman, Electrochemical impedance spectroscopy and electrochemical noise measurements as tools to evaluate corrosion inhibition of azole compounds on stainless steel in acidic media, Corros. Sci. 75(2013) 269-279.[35] P. Mourya, P. Singh, A.K. Tewari, R.B. Rastogi, M.M. Singh, Relationship between structure and inhibition behavior of quinolinium salts for mild steel corrosion:Experimental and theoretical approach, Corros. Sci. 95(2015) 71-87.[36] Q.B. Zhang, Y.X. Hua, Corrosion inhibition of aluminum in hydrocloric acid solution by alkylimidazoliium ionic liquids, Mater. Chem. Phys. 119(2010) 57-64.[37] R. Solmaz, Investigation of adsorption and corrosion inhibition of mild steel in hydrochloric acid solution by 5-(4-dimethylaminobenzylidene)rhodanine, Corros. Sci. 79(2014) 169-176.[38] Z. Yang, F. Zhan, Y. Pan, Z. LYu, C. Han, Y.P. Hu, P. Ding, T. Gao, X. Zhou, Y. Jiang, Structure of a novel benzyl quinolinium chloride derivative and its effective corrosion inhibition in 15 wt.% hydrochloric acid, Corros. Sci. 99(2015) 281-294.[39] A. Doner, G. Kardas, N-Aminorhodanine as an effective corrosion inhibitor for mild steel in 0.5 M H2SO4, Corros. Sci. 53(2011) 4223-4232.[40] M.A. Hegazy, Ali M. Hasan, M.M. Emara, Mostafa F. Bakr, Ahmed H. Youssef, Evaluating four synthesized Schiff bases as corrosion inhibitors on the carbon steel in 1 M hydrochloric acid, Corros. Sci. 65(2012) 67-76.[41] A.A. Gewirth, B.K. Niece, Electrochemical applications of in-situ scanning probe microscopy, Chem. Rev. 97(1997) 1129-1162.[42] Q. Qu, S.A. Jiang, W. Bai, L. Li, Effect of ethylenediamine tetraacetic acid disodium on the corrosion of cold rolled steel in the presence of benzotriazole in hydrochloric acid, Electrochim. Acta 52(2007) 6811-6820.[43] M. Yamashita, H. Miyuki, Y. Matsuda, The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century, Corros. Sci. 36(1994) 283-299.[44] A. Raman, B. Kuban, A. Razvan, The application of infrared spectroscopy to the study of atmospheric rust system-I. Standard spectra and illustrative applications to identify rust phases natural atmospheric corrosion products, Corros. Sci. 32(1991) 1295-1306.[45] G. Sigirik, D. Yildirim, T. Tuken, Synthesis and inhibitory effect of N,N'-bis(1-phenylethanol)ethylenediamine against steel corrosion in HCl media, Corros. Sci. 120(2017) 184-193.[46] P.M.L. Bonin, W. Jedral, M.S. Odziemkowski, R.W. Gillham, Electrochemical and Raman spectroscopic studies of the influence of chlorinated solvents on the corrosion behaviour of iron in borate buffer and in simulated groundwater, Corros. Sci. 42(2000) 1921-1939.[47] J.L. Yan, B. Ren, Z.F. Huang, P.G. Cao, R.A. Gu, Z.Q. Tian, Extending surface Raman spectroscopy to transition metals for practical applications IV. A study on corrosion inhibition of benzotriazole on bare Fe electrodes, Electrochim. Acta 48(2003) 1263-1271.[48] N.V. Likhanova, M.A. Dominguez-Aguilar, O. Olivares-Xometl, N. Nava-Entzana, E. Arce, H. Dorantes, The effect of ionic liquids with imidazolium and pyridinium cations on the corrosion inhibition of mild steel in acidic environment, Corros. Sci. 52(2010) 2088-2097.[49] X.H. Li, G.N. Mu, Tween-40 as corrosion inhibitor for cold rolled steel in sulphuric acid:Weight loss study, electro chemical characterization, and AFM, Appl. Surf. Sci. 252(2005) 1254-1265.[50] I.M. Baghmi, S.B. Lyon, B. Ding, The effect of strontium and chromate ions on the inhibition of zinc, Surf. Coat. Technol. 185(2004) 194-198.[51] X.H. Li, S.D. Deng, H. Fu, G.N. Mu, Inhibition by tween-85 of the corrosion of cold rolled steel in 1.0 M hydrochloric acid solution, J. Appl. Electrochem. 39(2009) 1125-1135.[52] M. Chellouli, D. Chebabe, A. Dermaj, H. Erramli, N. Bettach, N. Hajjaji, M.P. Casaletto, C. Cirrincione, A. Privitera, A. Srhiri, Corrosion inhibition of iron in acidic solution by a green formulation derived from Nigella sativa L, Corros. Sci. 204(2016) 50-59.[53] J.M. Zhao, G.H. Chen, The synergistic inhibition effect of oleic-based imidazoline and sodium benzoate on mild steel corrosion in a CO2-saturated brine solution, Electrochim. Acta 69(2012) 247-255.[54] T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials, Appl. Surf. Sci. 254(2008) 2441-2449.[55] R. Wang, An AFM and XPS study of corrosion caused by micro-liquid of dilute sulfuric acid on stainless steel, Appl. Surf. Sci. 227(2004) 399-409.[56] O. Olivares-Xometl, N.V. Likhanova, M.A. Dominguez-Aguilar, J.M. Hallen, L.S. Zamudio, E. Arce, Surface analysis of inhibitor films formed by imidazolines and amides on mild steel in an acidic environment, Appl. Surf. Sci. 252(2006) 2139-2152.[57] Y. Yan, W.H. Li, L.K. Cai, B.R. Hou, Electrochemical and quantum chemical study of purines as corrosion inhibitors for mild steel in 1 mol·L-1 HCl solution, Electrochim. Acta 53(2008) 5953-5960.[58] D.O. Isin, N. Karakus, Quantum chemical study on the inhibition efficiencies of some sym-triazinesas inhibitors for mild steel in acidic medium, J. Taiwan Inst. Chem. Eng. 50(2015) 306-313.[59] H.M. Abd El-Lateef, Experimental and computational investigation on the corrosion inhibition characteristics of mild steel by some novel synthesized imines in hydrochloric acid solutions, Corros. Sci. 92(2015) 104-117.[60] M. Finsgar, A. Lesar, A. Kokalj, I. Milosev, A comparative electrochemical and quantum chemical calculation study of BTAH and BTAOH as copper corrosion inhibitors in near neutral chloride solution, Electrochim. Acta 53(2008) 8287-8297.[61] L.J. Feng, H.Y. Yang, F.H. Wang, Experimental and theoretical studies for corrosion inhibition of carbon steel by imidazoline derivative in 5% NaCl saturated Ca(OH)2 solution, Electrochim. Acta 58(2011) 427-436.[62] G. Gece, The use of quantum chemical methods in corrosion inhibitor studies, Corros. Sci. 50(2008) 2981-2992.[63] R.G. Parr, W. Yang, Density function approach to the frontier-electron theory of chemical reactivity, J. Am. Chem. Soc. 106(1984) 4049-4050.[64] K.F. Khaled, Studies of iron corrosion inhibition using chemical, electrochemical and computer simulation techniques, Electrochim. Acta 55(2010) 6523-6532.[65] A. Kakalj, Is the analysis of molecular electronic structure of corrosion inhibitors sufficient to predict the trend of their inhibition performance, Electrochim. Acta 56(2010) 745-755. |
[1] | Yingli Li, Zhishuncheng Li, Guangfei Qu, Rui Li, Shuaiyu Liang, Junhong Zhou, Wei Ji, Huiming Tang. Mechanism, behaviour and application of iron nitrate modified carbon nanotube composites for the adsorption of arsenic in aqueous solutions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 26-36. |
[2] | Jing Huang, Honghui Cai, Qian Zhao, Yunpeng Zhou, Haibo Liu, Jing Wang. Dual-functional pyrene implemented mesoporous silicon material used for the detection and adsorption of metal ions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 108-117. |
[3] | Lingli Chen, Yueting Shi, Sijun Xu, Junle Xiong, Fang Gao, Shengtao Zhang, Hongru Li. Enhanced adsorption of target branched compounds including antibiotic norfloxacin frameworks on mild steel surface for efficient protection: An experimental and molecular modelling study [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 212-227. |
[4] | Alexander Nti Kani, Evans Dovi, Aaron Albert Aryee, Runping Han, Zhaohui Li, Lingbo Qu. Mechanisms and reusability potentials of zirconium-polyaziridine-engineered tiger nut residue towards anionic pollutants [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 275-292. |
[5] | Yuan Liu, Hanting Xiong, Jingwen Chen, Shixia Chen, Zhenyu Zhou, Zheling Zeng, Shuguang Deng, Jun Wang. One-step ethylene separation from ternary C2 hydrocarbon mixture with a robust zirconium metal-organic framework [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 9-15. |
[6] | Hui Jiang, Zijian Zhao, Ning Yu, Yi Qin, Zhengwei Luo, Wenhua Geng, Jianliang Zhu. Synthesis, characterization, and performance comparison of boron using adsorbents based on N-methyl-D-glucosamine [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 16-31. |
[7] | Chaoyi Yin, Jingyuan Ma, Jian Qiu, Ruifang Liu, Long Ba. Mass-producible low-cost flexible electronic fabrics for azo dye wastewater treatment by electrocoagulation [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 222-230. |
[8] | Runze Chen, Yuran Chen, Xuemin Liang, Yapeng Kong, Yangyang Fan, Quan Liu, Zhenyu Yang, Feiying Tang, Johnny Muya Chabu, Maru Dessie Walle, Liqiang Wang. Oxidative exfoliation of spent cathode carbon: A two-in-one strategy for its decontamination and high-valued application [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 262-269. |
[9] | Shanghong Ma, Haitao Zhang, Jianbo Qu, Xiuzhong Zhu, Qingfei Hu, Jianyong Wang, Peng Ye, Futao Sai, Shiwei Chen. Preparation of waterborne polyurethane/β-cyclodextrin composite nanosponge by ion condensation method and its application in removing of dyes from wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 124-136. |
[10] | Yueting Shi, Junhai Zhao, Lingli Chen, Hongru Li, Shengtao Zhang, Fang Gao. Double open mouse-like terpyridine parts based amphiphilic ionic molecules displaying strengthened chemical adsorption for anticorrosion of copper in sulfuric acid solution [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 233-246. |
[11] | Jian Wang, Yuanhui Shen, Donghui Zhang, Zhongli Tang, Wenbin Li. Integrated vacuum pressure swing adsorption and Rectisol process for CO2 capture from underground coal gasification syngas [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 265-279. |
[12] | Yujia Cui, Zhiqiang Tan, Yanan Wang, Shuxian Shi, Xiaonong Chen. One-step crosslinking preparation of tannic acid particles for the adsorption and separation of cationic dyes [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 309-318. |
[13] | Shanshan Mao, Tao Shen, Qing Zhao, Tong Han, Fan Ding, Xin Jin, Manglai Gao. Selective capture of silver ions from aqueous solution by series of azole derivatives-functionalized silica nanosheets [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 319-328. |
[14] | Hany M. Abd El-Lateef, Mai M. Khalaf, K. Shalabi, Antar A. Abdelhamid. Multicomponent synthesis and designing of tetrasubstituted imidazole compounds catalyzed via ionic-liquid for acid steel corrosion protection: Experimental exploration and theoretical calculations [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 304-319. |
[15] | Zhongqi Ren, Jie Wang, Hewei Zhang, Fan Zhang, Shichao Tian, Zhiyong Zhou. Adsorption of rubidium ion from aqueous solution by surface ion imprinted materials [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 1-10. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||