Chin.J.Chem.Eng. ›› 2019, Vol. 27 ›› Issue (2): 322-334.DOI: 10.1016/j.cjche.2018.03.012
• Special Issue of Membranes and Membrane Processes based on Confined Mass Transfer • Previous Articles Next Articles
Gholamhossein Sodeifian1, Mojtaba Raji1, Morteza Asghari1, Mashallah Rezakazemi2, Amir Dashti1
Received:
2018-03-02
Revised:
2018-03-28
Online:
2019-03-18
Published:
2019-02-28
Contact:
Gholamhossein Sodeifian
Supported by:
Supported by the University of Kashan and the nano-organization (1393/1752)
Gholamhossein Sodeifian1, Mojtaba Raji1, Morteza Asghari1, Mashallah Rezakazemi2, Amir Dashti1
通讯作者:
Gholamhossein Sodeifian
基金资助:
Supported by the University of Kashan and the nano-organization (1393/1752)
Gholamhossein Sodeifian, Mojtaba Raji, Morteza Asghari, Mashallah Rezakazemi, Amir Dashti. Polyurethane-SAPO-34 mixed matrix membrane for CO2/CH4 and CO2/N2 separation[J]. Chin.J.Chem.Eng., 2019, 27(2): 322-334.
Gholamhossein Sodeifian, Mojtaba Raji, Morteza Asghari, Mashallah Rezakazemi, Amir Dashti. Polyurethane-SAPO-34 mixed matrix membrane for CO2/CH4 and CO2/N2 separation[J]. Chinese Journal of Chemical Engineering, 2019, 27(2): 322-334.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2018.03.012
[1] M. Rezakazemi, M. Sadrzadeh, T. Matsuura, Thermally stable polymers for advanced high-performance gas separation membranes, Prog. Energy Combust. Sci. 66(2018) 1-41.[2] M. Rezakazemi, A. Ebadi Amooghin, M.M. Montazer-Rahmati, A.F. Ismail, T. Matsuura, State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs):An overview on current status and future directions, Prog. Polym. Sci. 39(2014) 817-861.[3] R. Fazaeli, S.M.R. Razavi, M.S. Najafabadi, R. Torkaman, A. Hemmati, Computational simulation of CO2 removal from gas mixtures by chemical absorbents in porous membranes, RSC Adv. 5(2015) 36787-36797.[4] S.M.R. Razavi, S.M.J. Razavi, T. Miri, S. Shirazian, CFD simulation of CO2 capture from gas mixtures in nanoporous membranes by solution of 2-amino-2-methyl-1-propanol and piperazine, Int. J. Greenhouse Gas Control 15(2013) 142-149.[5] S.M.R. Razavi, S. Shirazian, M.S. Najafabadi, Investigations on the ability of diisopropanol amine solution for removal of CO2 from natural gas in porous polymeric membranes, Polym. Eng. Sci. 55(2015) 598-603.[6] S.M.R. Razavi, S. Shirazian, M. Nazemian, Numerical simulation of CO2 separation from gas mixtures in membrane modules:Effect of chemical absorbent, Arab. J. Chem. 9(2016) 62-71.[7] E. Soroush, S. Shahsavari, M. Mesbah, M. Rezakazemi, Z. Zhang, A robust predictive tool for estimating CO2 solubility in potassium based amino acid salt solutions, Chin. J. Chem. Eng. 26(2018) 740-746.[8] M. Rezakazemi, I. Heydari, Z. Zhang, Hybrid systems:Combining membrane and absorption technologies leads to more efficient acid gases (CO2 and H2S) removal from natural gas, J. CO2 Util. 18(2017) 362-369.[9] S.M.R. Razavi, M. Rezakazemi, A.B. Albadarin, S. Shirazian, Simulation of CO2 absorption by solution of ammonium ionic liquid in hollow-fiber contactors, Chem. Eng. Process. Process Intensif. 108(2016) 27-34.[10] M. Fasihi, S. Shirazian, A. Marjani, M. Rezakazemi, Computational fluid dynamics simulation of transport phenomena in ceramic membranes for SO2 separation, Math. Comput. Model. 56(2012) 278-286.[11] S. Shirazian, A. Marjani, M. Rezakazemi, Separation of CO2 by single and mixed aqueous amine solvents in membrane contactors:Fluid flow and mass transfer modeling, Eng. Comput. 28(2011) 189-198.[12] K. Kim, P.G. Ingole, J. Kim, H. Lee, Separation performance of PEBAX/PEI hollow fiber composite membrane for SO2/CO2/N2 mixed gas, Chem. Eng. J. 233(2013) 242-250.[13] M. Rezakazemi, A. Dashti, H. Riasat Harami, N. Hajilari, Inamuddin, Fouling-resistant membranes for water reuse, Environ. Chem. Lett. (2018) 1-49.[14] M. Rezakazemi, A. Khajeh, M. Mesbah, Membrane filtration of wastewater from gas and oil production, Environ. Chem. Lett. (2017) 1-22.[15] A. Azimi, A. Azari, M. Rezakazemi, M. Ansarpour, Removal of heavy metals from industrial wastewaters:A review, ChemBioEng Rev. 4(2017) 37-59.[16] A. Dashti, M. Asghari, Recent progresses in ceramic hollow-fiber membranes, ChemBioEng Rev. 2(2015) 54-70.[17] V. Zargar, M. Asghari, A. Dashti, A review on chitin and chitosan polymers:Structure, chemistry, solubility, derivatives, and applications, ChemBioEng Rev. 2(2015) 204-226.[18] F. Raji, M. Pakizeh, A. Saraeian, M. Raji, A detailed study on adsorption isotherms of Hg(Ⅱ) removal from aqueous solutions using nanostructured sorbent ZnCl2-MCM-41, Desalin. Water Treat. 57(2016) 18694-18709.[19] M. Rezakazemi, Z. Niazi, M. Mirfendereski, S. Shirazian, T. Mohammadi, A. Pak, CFD simulation of natural gas sweetening in a gas-liquid hollow-fiber membrane contactor, Chem. Eng. J. 168(2011) 1217-1226.[20] X. An, P.G. Ingole, W.-K. Choi, H.-K. Lee, S.U. Hong, J.-D. Jeon, Development of thin film nanocomposite membranes incorporated with sulfated β-cyclodextrin for water vapor/N2 mixture gas separation, J. Ind. Eng. Chem. 59(2018) 259-265.[21] W. Choi, P.G. Ingole, H. Li, J.-H. Kim, H.-K. Lee, I.-H. Baek, Preparation of facilitated transport hollow fiber membrane for gas separation using cobalt tetraphenylporphyrin complex as a coating material, J. Clean. Prod. 133(2016) 1008-1016.[22] P.G. Ingole, M.I. Baig, W. Choi, X. An, W.K. Choi, H.K. Lee, Role of functional nanoparticles to enhance the polymeric membrane performance for mixture gas separation, J. Ind. Eng. Chem. 48(2017) 5-15.[23] E. Farno, M. Rezakazemi, T. Mohammadi, N. Kasiri, Ternary gas permeation through synthesized PDMS membranes:Experimental and CFD simulation based on sorption-dependent system using neural network model, Polym. Eng. Sci. 54(2014) 215-226.[24] I. Tirouni, M. Sadeghi, M. Pakizeh, Separation of C3H8 and C2H6 from CH4 in polyurethane-zeolite 4A and ZSM-5 mixed matrix membranes, Sep. Purif. Technol. 141(2015) 394-402.[25] X. Jiang, J. Ding, A. Kumar, Polyurethane-poly(vinylidene fluoride) (PU-PVDF) thin film composite membranes for gas separation, J. Membr. Sci. 323(2008) 371-378.[26] M. Rezakazemi, A. Dashti, M. Asghari, S. Shirazian, H2-selective mixed matrix membranes modeling using ANFIS, PSO-ANFIS, GA-ANFIS, Int. J. Hydrog. Energy 42(2017) 15211-15225.[27] P.G. Ingole, M. Sohail, A.M. Abou-Elanwar, M.I. Baig, J.-D. Jeon, W.K. Choi, H. Kim, H.K. Lee, Water vapor separation from flue gas using MOF incorporated thin film nanocomposite hollow fiber membranes, Chem. Eng. J. 334(2018) 2450-2458.[28] B. Baheri, M. Shahverdi, M. Rezakazemi, E. Motaee, T. Mohammadi, Performance of PVA/NaA mixed matrix membrane for removal of water from ethylene glycol solutions by pervaporation, Chem. Eng. Commun. 202(2014) 316-321.[29] M. Shahverdi, B. Baheri, M. Rezakazemi, E. Motaee, T. Mohammadi, Pervaporation study of ethylene glycol dehydration through synthesized (PVA-4A)/polypropylene mixed matrix composite membranes, Polym. Eng. Sci. 53(2013) 1487-1493.[30] M. Rostamizadeh, M. Rezakazemi, K. Shahidi, T. Mohammadi, Gas permeation through H2-selective mixed matrix membranes:Experimental and neural network modeling, Int. J. Hydrog. Energy 38(2013) 1128-1135.[31] M. Rezakazemi, T. Mohammadi, Gas sorption in H2-selective mixed matrix membranes:Experimental and neural network modeling, Int. J. Hydrog. Energy 38(2013) 14035-14041.[32] M. Rezakazemi, K. Shahidi, T. Mohammadi, Sorption properties of hydrogenselective PDMS/zeolite 4 A mixed matrix membrane, Int. J. Hydrog. Energy 37(2012) 17275-17284.[33] M. Rezakazemi, Z. Zhang, 2.29 Desulfurization materials A2, in:Ibrahim Dincer (Ed.), Comprehensive Energy Systems, Elsevier, Oxford 2018, pp. 944-979.[34] E. Karatay, H. Kalipcilar, L. Yilmaz, Preparation and performance assessment of binary and ternary PES-SAPO 34-HMA based gas separation membranes, J. Membr. Sci. 364(2010) 75-81.[35] Y.C. Hudiono, T.K. Carlisle, A.L. LaFrate, D.L. Gin, R.D. Noble, Novel mixed matrix membranes based on polymerizable room-temperature ionic liquids and SAPO-34 particles to improve CO2 separation, J. Membr. Sci. 370(2011) 141-148.[36] M. Sen, N. Das, In situ carbon deposition in polyetherimide/SAPO-34 mixed matrix membrane for efficient CO2/CH4 separation, J. Appl. Polym. Sci. 134(2017), 45508.[37] D. Zhao, J. Ren, H. Li, K. Hua, M. Deng, Poly(amide-6-b-ethylene oxide)/SAPO-34 mixed matrix membrane for CO2 separation, J. Energy Chem. 23(2014) 227-234.[38] E.E. Oral, L. Yilmaz, H. Kalipcilar, Effect of gas permeation temperature and annealing procedure on the performance of binary and ternary mixed matrix membranes of polyethersulfone, SAPO-34, and 2-hydroxy 5-methyl aniline, J. Appl. Polym. Sci. 131(2014), 40679.[39] N. Ahmad, H. Mukhtar, D. Mohshim, R. Nasir, Z. Man, Effect of different organic amino cations on SAPO-34 for PES/SAPO-34 mixed matrix membranes toward CO2/CH4 separation, J. Appl. Polym. Sci. 133(2016).[40] M. Sadeghi, M.A. Semsarzadeh, M. Barikani, B. Ghalei, Study on the morphology and gas permeation property of polyurethane membranes, J. Membr. Sci. 385(2011) 76-85.[41] E. Ameri, M. Sadeghi, N. Zarei, A. Pournaghshband, Enhancement of the gas separation properties of polyurethane membranes by alumina nanoparticles, J. Membr. Sci. 479(2015) 11-19.[42] S. Hassanajili, M. Khademi, P. Keshavarz, Influence of various types of silica nanoparticles on permeation properties of polyurethane/silica mixed matrix membranes, J. Membr. Sci. 453(2014) 369-383.[43] I. Tirouni, M. Sadeghi, M. Pakizeh, Separation of C3H8 and C2H6 from CH4 in polyurethane-zeolite 4A and ZSM-5 mixed matrix membranes, Sep. Purif. Technol. 141(2015) 394-402.[44] M. Sadeghi, M.M. Talakesh, B. Ghalei, M. Shafiei, Preparation, characterization and gas permeation properties of a polycaprolactone based polyurethane-silica nanocomposite membrane, J. Membr. Sci. 427(2013) 21-29.[45] M. Sadeghi, H.T. Afarani, Z. Tarashi, Preparation and investigation of the gas separation properties of polyurethane-TiO2 nanocomposite membranes, Korean J. Chem. Eng. 32(2015) 97-103.[46] M. Rezakazemi, CFD simulation of seawater purification using direct contact membrane desalination (DCMD) system, Desalination 443(2018) 323-332.[47] A. Muhammad, M. Younas, M. Rezakazemi, CFD simulation of copper(Ⅱ) extraction with TFA in non-dispersive hollow fiber membrane contactors, Environ. Sci. Pollut. Res. (2018) 1-11.[48] M. Rezakazemi, M. Iravaninia, S. Shirazian, T. Mohammadi, Transient computational fluid dynamics modeling of pervaporation separation of aromatic/aliphatic hydrocarbon mixtures using polymer composite membrane, Polym. Eng. Sci. 53(2013) 1494-1501.[49] S. Shirazian, M. Rezakazemi, A. Marjani, M.S. Rafivahid, Development of a mass transfer model for simulation of sulfur dioxide removal in ceramic membrane contactors, Asia Pac. J. Chem. Eng. 7(2012) 828-834.[50] F. Hashemi, S. Rowshanzamir, M. Rezakazemi, CFD simulation of PEM fuel cell performance:Effect of straight and serpentine flow fields, Math. Comput. Model. 55(2012) 1540-1557.[51] M. Rezakazemi, M. Shahverdi, S. Shirazian, T. Mohammadi, A. Pak, CFD simulation of water removal from water/ethylene glycol mixtures by pervaporation, Chem. Eng. J. 168(2011) 60-67.[52] A. Muhammad, M. Younas, M. Rezakazemi, Quasi-dynamic modeling of dispersionfree extraction of aroma compounds using hollow fiber membrane contactor, Chem. Eng. Res. Des. 127(2017) 52-61.[53] M. Rezakazemi, A. Ghafarinazari, S. Shirazian, A. Khoshsima, Numerical modeling and optimization of wastewater treatment using porous polymeric membranes, Polym. Eng. Sci. 53(2013) 1272-1278.[54] S. Shirazian, M. Rezakazemi, A. Marjani, S. Moradi, Hydrodynamics and mass transfer simulation of wastewater treatment in membrane reactors, Desalination 286(2012) 290-295.[55] S. Shirazian, M. Pishnamazi, M. Rezakazemi, A. Nouri, M. Jafari, S. Noroozi, A. Marjani, Implementation of the finite element method for simulation of mass transfer in membrane contactors, Chem. Eng. Technol. 35(2012) 1077-1084.[56] M. Rezakazemi, S. Shirazian, S.N. Ashrafizadeh, Simulation of ammonia removal from industrial wastewater streams by means of a hollow-fiber membrane contactor, Desalination 285(2012) 383-392.[57] M. Rezakazemi, S. Razavi, T. Mohammadi, A.G. Nazari, Simulation and determination of optimum conditions of pervaporative dehydration of isopropanol process using synthesized PVA-APTEOS/TEOS nanocomposite membranes by means of expert systems, J. Membr. Sci. 379(2011) 224-232.[58] M. Peer, M. Mahdyarfar, T. Mohammadi, Evaluation of a mathematical model using experimental data and artificial neural network for prediction of gas separation, J. Nat. Gas Chem. 17(2008) 135-141.[59] Y. Chen, Y. Zhang, C. Zhang, J. Jiang, X. Gu, Fabrication of high-flux SAPO-34 membrane on α-Al2O3 four-channel hollow fibers for CO2 capture from CH4, J. CO2 Util. 18(2017) 30-40.[60] L. Guangyu, T. Peng, L. Zhongmin, Synthesis of SAPO-34 molecular sieves templated with diethylamine and their properties compared with other templates, Chin. J. Catal. 33(2012) 174-182.[61] M. Ito, Y. Shimoyama, Y. Saito, Y. Tsurita, M. Otake, Structure of an aluminosilicophosphate, Acta Crystallogr. Sect. C:Cryst. Struct. Commun. 41(1985) 1698-1700.[62] M. Sadrzadeh, M. Rezakazemi, T. Mohammadi, Fundamentals and measurement techniques for gas transport in polymers, in:R. Wilson, A.K. S, S.C. George (Eds.), Transport Properties of Polymeric Membranes, Elsevier 2018, pp. 391-423.[63] M. Rezakazemi, K. Shahidi, T. Mohammadi, Hydrogen separation and purification using crosslinkable PDMS/zeolite A nanoparticles mixed matrix membranes, Int. J. Hydrog. Energy 37(2012) 14576-14589.[64] A.P. Isfahani, M. Sadeghi, A.H.S. Dehaghani, M.A. Aravand, Enhancement of the gas separation properties of polyurethane membrane by epoxy nanoparticles, J. Ind. Eng. Chem. 44(2016) 67-72.[65] M. Gholami, T. Mohammadi, S. Mosleh, M. Hemmati, CO2/CH4 separation using mixed matrix membrane-based polyurethane incorporated with ZIF-8 nanoparticles, Chem. Pap. 71(2017) 1839-1853.[66] R.S. Murali, A. Ismail, M. Rahman, S. Sridhar, Mixed matrix membranes of Pebax-1657 loaded with 4 A zeolite for gaseous separations, Sep. Purif. Technol. 129(2014) 1-8.[67] M. Asghari, A. Mahmudi, V. Zargar, G. Khanbabaei, Effect of polyethyleneglycol on CH4 permeation through poly (amide-b-ethylene oxide)-based nanocomposite membranes, Appl. Surf. Sci. 318(2014) 218-222.[68] M. Sadeghi, M.A. Semsarzadeh, M. Barikani, M.P. Chenar, Gas separation properties of polyether-based polyurethane-silica nanocomposite membranes, J. Membr. Sci. 376(2011) 188-195.[69] M. Sadeghi, H. Afarani, Z. Tarashi, Preparation and investigation of the gas separation properties of polyurethane-TiO2 nanocomposite membranes, Korean J. Chem. Eng. 32(2015) 97-103.[70] L.H. Sperling, Concentrated solutions, phase separation behavior, and diffusion, Introduction to Physical Polymer Science, Fourth Edition 2006, pp. 145-195.[71] M. Rezakazemi, A. Vatani, T. Mohammadi, Synthesis and gas transport properties of crosslinked poly(dimethylsiloxane) nanocomposite membranes using octatrimethylsiloxy POSS nanoparticles, J. Nat. Gas Sci. Eng. 30(2016) 10-18.[72] M. Rezakazemi, A. Vatani, T. Mohammadi, Synergistic interactions between POSS and fumed silica and their effect on the properties of crosslinked PDMS nanocomposite membranes, RSC Adv. 5(2015) 82460-82470.[73] L.M. Robeson, The upper bound revisited, J. Membr. Sci. 320(2008) 390-400.[74] D. Kleinbaum, L. Kupper, A. Nizam, E. Rosenberg, Applied Regression Analysis and Other Multivariable Methods, Cengage Learning, 2013.[75] A. Dashti, H.R. Harami, M. Rezakazemi, Accurate prediction of solubility of gases within H2-selective nanocomposite membranes using committee machine intelligent system, Int. J. Hydrog. Energy 43(2018) 6614-6624.[76] J.-S.R. Jang, C.-T. Sun, E. Mizutani, Neuro-fuzzy and soft computing-a computational approach to learning and machine intelligence[book review], IEEE Trans. Autom. Control 42(1997) 1482-1484.[77] M. Rostamizadeh, S.M.H. Rizi, Predicting gas flux in silicalite-1 zeolite membrane using artificial neural networks, J. Membr. Sci. 403(2012) 146-151.[78] B. Kwak, S. Hyun, G. Kim, CO2 separation characteristics of ZSM-5 composite membranes synthesized by the hydrothermal treatment, J. Mater. Sci. Lett. 20(2001) 1893-1896. |
[1] | Xinxin Li, Hongwei Shao, Shichao Zhang, Yong Li, Jingjing Gu, Qiang Huang, Jin Ran. Two dimensional MoS2 finding its way towards constructing high-performance alkaline recovery membranes [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 155-164. |
[2] | Wenwen Zhang, Zhigang Xue, Liyun Cui, Haoliang Gao, Di Zhao, Rongfei Zhou, Weihong Xing. Synthesis of an IMF zeolite membrane for the separation of xylene isomer [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 205-211. |
[3] | Hammad Saulat, Jianhua Yang, Tao Yan, Waseem Raza, Wensen Song, Gaohong He. Tungsten incorporated mobil-type eleven zeolite membranes: Facile synthesis and tuneable wettability for highly efficient separation of oil/water mixtures [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 242-252. |
[4] | Sinu Poolachira, Sivasubramanian Velmurugan. Graphene oxide/hydrotalcite modified polyethersulfone nanohybrid membrane for the treatment of lead ion from battery industrial effluent [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 253-261. |
[5] | Jindong Dai, Chi Zhai, Jiali Ai, Guangren Yu, Haichao Lv, Wei Sun, Yongzhong Liu. A cellular automata framework for porous electrode reconstruction and reaction-diffusion simulation [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 262-274. |
[6] | Yong Xu, Qingbai Chen, Yang Gao, Jianyou Wang, Huiqing Fan, Fei Zhao. Performance comparison of lithium fractionation from magnesium via continuous selective nanofiltration/electrodialysis [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 42-50. |
[7] | Meihua Zhu, Xingguo An, Tian Gui, Ting Wu, Yuqin Li, Xiangshu Chen. Effects of ion-exchange on the pervaporation performance and microstructure of NaY zeolite membrane [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 176-181. |
[8] | Yaran Bu, Changchun Wu, Lili Zuo, Qian Chen. The calculation and optimal allocation of transmission capacity in natural gas networks with MINLP models [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 251-261. |
[9] | Qunfeng Zhang, Bingcheng Li, Yuan Zhou, Deshuo Zhang, Chunshan Lu, Feng Feng, Jinghui Lv, Qingtao Wang, Xiaonian Li. Regulation of the selective hydrogenation performance of sulfur-doped carbon-supported palladium on chloronitrobenzene [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 69-75. |
[10] | Yafei Su, Xuke Zhang, Hui Li, Donglai Peng, Yatao Zhang. In-situ incorporation of halloysite nanotubes with 2D zeolitic imidazolate framework-L based membrane for dye/salt separation [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 103-111. |
[11] | Shanghong Ma, Haitao Zhang, Jianbo Qu, Xiuzhong Zhu, Qingfei Hu, Jianyong Wang, Peng Ye, Futao Sai, Shiwei Chen. Preparation of waterborne polyurethane/β-cyclodextrin composite nanosponge by ion condensation method and its application in removing of dyes from wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 124-136. |
[12] | Danlei Chen, Yiqing Luo, Xigang Yuan. Cascade refrigeration system synthesis based on hybrid simulated annealing and particle swarm optimization algorithm [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 244-255. |
[13] | Haike Li, Xindong Li, Guozai Ouyang, Lang Li, Zhaohuang Zhong, Meng Cai, Wenhao Li, Wanfu Huang. Tannic acid/Fe3+ interlayer for preparation of high-permeability polyetherimide organic solvent nanofiltration membranes for organic solvent separation [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 17-29. |
[14] | Shanshan Mao, Tao Shen, Qing Zhao, Tong Han, Fan Ding, Xin Jin, Manglai Gao. Selective capture of silver ions from aqueous solution by series of azole derivatives-functionalized silica nanosheets [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 319-328. |
[15] | Jiajun Wang, Wenbin Yang, Jiangtao Geng, Zhigang Shao, Wei Song. Experimental investigation on degradation mechanism of membrane electrode assembly at different humidity under automotive protocol [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 70-79. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||