Chinese Journal of Chemical Engineering ›› 2019, Vol. 27 ›› Issue (3): 620-627.DOI: 10.1016/j.cjche.2018.08.026
• Chemical Engineering Thermodynamics • Previous Articles Next Articles
Alireza Baghban1, Jafar Sasanipour2, Sajjad Habibzadeh1,3, Zhi'en Zhang4
Received:
2018-03-28
Revised:
2018-08-01
Online:
2019-04-25
Published:
2019-03-28
Contact:
Alireza Baghban,E-mail addresses:Alireza_baghban@alumni.ut.ac.ir;Zhi'en Zhang,E-mail addresses:zhienzhang@hotmail.com
Alireza Baghban1, Jafar Sasanipour2, Sajjad Habibzadeh1,3, Zhi'en Zhang4
通讯作者:
Alireza Baghban,E-mail addresses:Alireza_baghban@alumni.ut.ac.ir;Zhi'en Zhang,E-mail addresses:zhienzhang@hotmail.com
Alireza Baghban, Jafar Sasanipour, Sajjad Habibzadeh, Zhi'en Zhang. Estimating solubility of supercritical H2S in ionic liquids through a hybrid LSSVM chemical structure model[J]. Chinese Journal of Chemical Engineering, 2019, 27(3): 620-627.
Alireza Baghban, Jafar Sasanipour, Sajjad Habibzadeh, Zhi'en Zhang. Estimating solubility of supercritical H2S in ionic liquids through a hybrid LSSVM chemical structure model[J]. 中国化学工程学报, 2019, 27(3): 620-627.
[1] | Z. Zhang, J. Cai, F. Chen, H. Li, W. Zhang, W. Qi, Progress in enhancement of CO2 absorption by nanofluids:A mini review of mechanisms and current status, Renew. Energy 118(2018) 527-535. |
[2] | M. Rezakazemi, I. Heydari, Z. Zhang, Hybrid systems:Combining membrane and absorption technologies leads to more efficient acid gases (CO2 and H2S) removal from natural gas, J. CO2 Util. 18(2017) 362-369. |
[3] | M. Rahmati-Rostami, C. Ghotbi, M. Hosseini-Jenab, A.N. Ahmadi, A.H. Jalili, Solubility of H2S in ionic liquids[hmim] [PF6],[hmim] [BF4], and[hmim] [Tf2N], J. Chem. Thermodyn. 41(2009) 1052-1055. |
[4] | R.D. Rogers, K.R. Seddon, Chemistry. Ionic liquids-Solvents of the future? Science 302(2003) 792-793. |
[5] | Z. Li, X. Zhang, H. Dong, H. Gao, S. Zhang, J. Li, C. Wang, Efficient absorption of ammonia with hydroxyl-functionalized ionic liquids, RSC Adv. 5(2015) 81362-81370. |
[6] | Y. Huang, Y. Zhao, S. Zeng, X. Zhang, S. Zhang, Density prediction of mixtures of ionic liquids and molecular solvents using two new generalized models, Ind. Eng. Chem. Res. 53(2014) 15270-15277. |
[7] | D. Bao, X. Zhang, H. Dong, Z. Ouyang, X. Zhang, S. Zhang, Numerical simulations of bubble behavior and mass transfer in CO2 capture system with ionic liquids, Chem. Eng. Sci. 135(2015) 76-88. |
[8] | A. Eslamimanesh, F. Gharagheizi, A.H. Mohammadi, D. Richon, Artificial Neural Network modeling of solubility of supercritical carbon dioxide in 24 commonly used ionic liquids, Chem. Eng. Sci. 66(2011) 3039-3044. |
[9] | L.A. Blanchard, H. Dan, E.J. Beckman, J.F. Brennecke, Green processing using ionic liquids and CO2, Nature 399(1999) 28-29. |
[10] | X. Zhang, X. Zhang, H. Dong, Z. Zhao, S. Zhang, Y. Huang, Carbon capture with ionic liquids:Overview and progress, Energy Environ. Sci. 5(2012) 6668-6681. |
[11] | S. Zeng, H. He, H. Gao, X. Zhang, J. Wang, Y. Huang, S. Zhang, Improving SO2 capture by tuning functional groups on the cation of pyridinium-based ionic liquids, RSC Adv. 5(2014) 2470-2478. |
[12] | K. Huang, X.M. Zhang, Y. Xu, Y.T. Wu, X.B. Hu, Y. Xu, Protic ionic liquids for the selective absorption of H2S from CO2:Thermodynamic analysis, AIChE J. 60(2014) 4232-4240. |
[13] | F.Y. Jou, A.E. Mather, Solubility of hydrogen sulfide in[bmim] [PF6], Int. J. Thermophys. 28(2007) 490. |
[14] | C.S. Pomelli, C. Chiappe, A. Vidis, G. Laurenczy, P.J. Dyson, Influence of the interaction between hydrogen sulfide and ionic liquids on solubility:Experimental and theoretical investigation, J. Phys. Chem. B 111(2007) 13014-13019. |
[15] | H.Q.N. Gunaratne, P. Nockemann, K.R. Seddon, Ionic liquids for efficient hydrogen sulfide and thiol scavenging, Green Chem. 16(2014) 2411-2417. |
[16] | Z. Lei, C. Dai, B. Chen, Gas solubility in ionic liquids, Chem. Rev. 114(2014) 1289-1326. |
[17] | A. Shafiei, M.A. Ahmadi, S.H. Zaheri, A. Baghban, A. Amirfakhrian, R. Soleimani, Estimating hydrogen sulfide solubility in ionic liquids using a machine learning approach, J. Supercrit. Fluids 95(2014) 525-534. |
[18] | M.A. Ahmadi, B. Pouladi, Y. Javvi, S. Alfkhani, R. Soleimani, Connectionist technique estimates H2S solubility in ionic liquids through a low parameter approach, J. Supercrit. Fluids 97(2015) 81-87. |
[19] | M.A. Sedghamiz, A. Rasoolzadeh, M.R. Rahimpour, The ability of artificial neural network in prediction of the acid gases solubility in different ionic liquids, J. CO2 Util. 9(2015) 39-47. |
[20] | M.A. Ahmadi, R. Haghbakhsh, R. Soleimani, M.B. Bajestani, Estimation of H2S solubility in ionic liquids using a rigorous method, J. Supercrit. Fluids 92(2014) 60-69. |
[21] | A. Klamt, Volker Jonas, A. Thorsten Burger, J.C.W. Lohrenz, Refinement and parametrization of COSMO-RS, J. Phys. Chem. A 102(1998) 5074-5085. |
[22] | A. Klamt, F. Eckert, COSMO-RS:A novel and efficient method for the a priori prediction of thermophysical data of liquids, Fluid Phase Equilib. 172(2000) 43-72. |
[23] | F. Eckert, A. Klamt, Fast solvent screening via quantum chemistry:COSMO-RS ap-proach, AIChE J. 48(2002) 369-385. |
[24] | M. Diedenhofen, A. Klamt, COSMO-RS as a tool for property prediction of IL mixtures -A review, Fluid Phase Equilib. 294(2010) 31-38. |
[25] | X. Zhang, Z. Liu, W. Wang, Screening of ionic liquids to capture CO2 by COSMO-RS and experiments, AIChE J. 54(2008) 2717-2728. |
[26] | K.Z. Sumon, A. Henni, Ionic liquids for CO2 capture using COSMO-RS:Effect of structure, properties and molecular interactions on solubility and selectivity, Fluid Phase Equilib. 310(2011) 39-55. |
[27] | J. Palomar, M. Gonzalezmiquel, A. Polo, F. Rodriguez, Understanding the physical absorption of CO2 in ionic liquids using the COSMO-RS method, Ind. Eng. Chem. Res. 50(2011) 3452-3463. |
[28] | J. Palomar, M. Gonzalez-Miquel, J. Bedia, F. Rodriguez, J.J. Rodriguez, Task-specific ionic liquids for efficient ammonia absorption, Sep. Purif. Technol. 82(2011) 43-52. |
[29] | G. Garcia, M. Atilhan, S. Aparicio, A density functional theory insight towards the rational design of ionic liquids for SO2 capture, Phys. Chem. Chem. Phys. 17(2015) 13559. |
[30] | Y. Huang, H. Dong, X. Zhang, C. Li, S. Zhang, New fragment contribution-corresponding states method for physicochemical properties prediction of ionic liquids, AIChE J. 59(2013) 1348-1359. |
[31] | F. Gharagheizi, G.R. Salehi, Prediction of enthalpy of fusion of pure compounds using an Artificial Neural Network-Group Contribution method, Thermochim. Acta 521(2011) 37-40. |
[32] | F. Gharagheizi, A. Eslamimanesh, A.H. Mohammadi, D. Richon, Determination of critical properties and acentric factors of pure compounds using the artificial neural network group contribution algorithm, J. Chem. Eng. Data 56(2011) 2460-2476. |
[33] | H. Handy, A. Santoso, A. Widodo, J. Palgunadi, T.H. Soerawidjaja, A. Indarto, H2S-CO2 separation using room temperature ionic liquid[BMIM] [Br], Sep. Sci. Technol. 49(2014) 2079-2084. |
[34] | A.H. Jalili, A. Mehdizadeh, M. Shokouhi, A.N. Ahmadi, M. Hosseini-Jenab, F. Fateminassab, Solubility and diffusion of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate, J. Chem. Thermodyn. 42(2010) 1298-1303. |
[35] | M.B. Shiflett, A.M.S. Niehaus, A. Yokozeki, Separation of CO2 and H2S using roomtemperature ionic liquid[bmim] [MeSO4], Fluid Phase Equilib. 294(2010) 105-113. |
[36] | M. Shokouhi, M. Adibi, A.H. Jalili, M. Hosseinijenab, A. Mehdizadeh, Solubility and diffusion of H2S and CO2 in the ionic liquid 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate, J. Chem. Eng. Data 55(2010) 1663-1668. |
[37] | H. Sakhaeinia, A.H. Jalili, V. Taghikhani, A.A. Safekordi, Solubility of H2S in ionic liquids 1-ethyl-3-methylimidazolium hexafluorophosphate ([emim] [PF6]) and 1-ethyl-3-methylimidazolium bis(trifluoromethyl)sulfonylimide ([emim] [Tf2N]), J. Chem. Eng. Data 55(2010) 5839-5845. |
[38] | A.H. Jalili, M. Rahmatirostami, C. Ghotbi, M. Hosseinijenab, A.N. Ahmadi, Solubility of H2S in ionic liquids[bmim] [PF6],[bmim] [BF4], and[bmim] [Tf2N], J. Chem. Thermodyn. 41(2009) 1052-1055. |
[39] | A.H. Jalili, M. Safavi, C. Ghotbi, A. Mehdizadeh, M. Hosseinijenab, V. Taghikhani, Solubility of CO2, H2S, and their mixture in the ionic liquid 1-octyl-3-methylimidazolium bis(trifluoromethyl)sulfonylimide, J. Phys. Chem. B 116(2012) 2758-2774. |
[40] | M. Safavi, C. Ghotbi, V. Taghikhani, A.H. Jalili, A. Mehdizadeh, Study of the solubility of CO2, H2S and their mixture in the ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate:Experimental and modelling, J. Chem. Thermodyn. 65(2013) 220-232. |
[41] | K. Huang, D.N. Cai, Y.L. Chen, Y.T. Wu, X.B. Hu, Z.B. Zhang, Thermodynamic validation of 1-alkyl-3-methylimidazolium carboxylates as task-specific ionic liquids for H2S absorption, AIChE J. 59(2013) 2227-2235. |
[42] | A.H. Jalili, M. Shokouhi, G. Maurer, M. Hosseini-Jenab, Solubility of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate, J. Chem. Thermodyn. 67(2013) 55-62. |
[43] | J.A.K. Suykens, J. Vandewalle, Least Squares Support Vector Machine Classifiers, Kluwer Academic Publishers, 1999. |
[44] | A. Eslamimanesh, F. Gharagheizi, M. Illbeigi, A.H. Mohammadi, A. Fazlali, D. Richon, Phase equilibrium modeling of clathrate hydrates of methane, carbon dioxide, nitrogen, and hydrogen + water soluble organic promoters using Support Vector Machine algorithm, Fluid Phase Equilib. 316(2012) 34-45. |
[45] | A. Hemmati-Sarapardeh, A. Shokrollahi, A. Tatar, F. Gharagheizi, A.H. Mohammadi, A. Naseri, Reservoir oil viscosity determination using a rigorous approach, Fuel 116(2014) 39-48. |
[46] | H. Li, Z. Zhang, Z. Liu, Application of artificial neural networks for catalysis:A review, Catalysts 7(2017) 306. |
[47] | K. Pelckmans, J.A.K. Suykens, T.V. Gestel, J.D. Brabanter, L. Lukas, B. Hamers, B.D. Moor, LS-SVMlab:A MATLAB/C Toolbox for Least Squares Support Vector Machines, Tutorial Kuleuven, 2002. |
[48] | A. Perez-Salado Kamps, D. Tuma, J. Xia, G. Maurer, Solubility of CO2 in the ionic liquid[bmim] [PF6], J. Chem. Eng. Data 48(2003) 746-749. |
[49] | H.R. Amedi, A. Baghban, M.A. Ahmadi, Evolving machine learning models to predict hydrogen sulfide solubility in the presence of various ionic liquids, J. Mol. Liq. 216(2016) 411-422. |
[50] | A. Baghban, M.N. Kardani, A.H. Mohammadi, Improved estimation of Cetane number of fatty acid methyl esters (FAMEs) based biodiesels using TLBO-NN and PSO-NN models, Fuel 232(2018) 620-631. |
[51] | A. Baghban, M. Adelizadeh, On the determination of cetane number of hydrocarbons and oxygenates using Adaptive Neuro Fuzzy Inference System optimized with evolutionary algorithms, Fuel 230(2018) 344-354. |
[52] | A. Baghban, J. Sasanipour, Z. Zhang, A new chemical structure-based model to estimate solid compound solubility in supercritical CO2, J. CO2 Util. 26(2018) 262-270. |
[1] | Eileen Katherine Coronado-Aldana, Cindy Lizeth Ferreira-Salazar, Nubia Yineth Piñeros-Castro, Rubén Vázquez-Medina, Felipe A. Perdomo. Thermodynamic analysis, synthesis, characterization, and evaluation of 1-ethyl-3-methylimidazolium chloride: Study of its effect on pretreated rice husk [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 143-154. |
[2] | Zhonghao Li, Yuanyuan Yang, Huanong Cheng, Yun Teng, Chao Li, Kangkang Li, Zhou Feng, Hongwei Jin, Xinshun Tan, Shiqing Zheng. Measurement and model of density, viscosity, and hydrogen sulfide solubility in ferric chloride/trioctylmethylammonium chloride ionic liquid [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 210-221. |
[3] | Chen Chen, Qiong Tang, Hong Xu, Mingxing Tang, Xuekuan Li, Lei Liu, Jinxiang Dong. Alkyl-tetralin base oils synthesized from coal-based chemicals and evaluation of their lubricating properties [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 20-28. |
[4] | Yutong Jiang, Yifeng Chen, Fuliu Yang, Jixue Fan, Jun Li, Zhuhong Yang, Xiaoyan Ji. Efficient SO2 removal using aqueous ionic liquid at low partial pressure [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 355-363. |
[5] | Jialei Sha, Chenyi Liu, Zhihong Ma, Weizhong Zheng, Weizhen Sun, Ling Zhao. Understanding the interfacial behaviors of benzene alkylation with butene using chloroaluminate ionic liquid catalyst: A molecular dynamics simulation [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 44-52. |
[6] | Yifeng Chen, Hang Yu, Jingjing Chen, Xiaohua Lu, Xiaoyan Ji. Viscous behavior of 1-hexyl-methylimidazolium bis(trifluoromethylsulfonyl)imide/titanium dioxide/polyethylene glycol [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 280-287. |
[7] | Mi Feng, Bin He, Xinyan Chen, Junli Xu, Xingmei Lu, Cai Jia, Jian Sun. Separation of chitin from shrimp shells enabled by transition metal salt aqueous solution and ionic liquid [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 133-141. |
[8] | Xuan Gao, Zhihui Li, Dongsheng Zhang, Xinqiang Zhao, Yanji Wang. Synthesis and kinetics of 2,5-dicyanofuran in the presence of hydroxylamine ionic liquid salts [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 310-316. |
[9] | Xinqiang You, Kai Zhao, Ling Li, Ting Qiu. Ionic liquids as entrainer in extractive distillation for effectively separating 1-propanol–water azeotropic mixture [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 224-233. |
[10] | Minjie Shi, Hangtian Zhu, Cheng Yang, Jing Xu, Chao Yan. Chemical reduction-induced fabrication of graphene hybrid fibers for energy-dense wire-shaped supercapacitors [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 1-10. |
[11] | Song Hu, Jinlong Li, Qihua Wang, Weisheng Yang. Design and optimization of an integrated process for the purification of propylene oxide and the separation of propylene glycol by-product [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 111-120. |
[12] | Linlan Wu, Zhengxin Jiao, Suhang Xun, Minqiang He, Lei Fan, Chao Wang, Wenshu Yang, Wenshuai Zhu, Huaming Li. Photocatalytic oxidative of Keggin-type polyoxometalate ionic liquid for enhanced extractive desulfurization in binary deep eutectic solvents [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 205-211. |
[13] | Alireza Afsharpour. A new approach for correlating of H2S solubility in [emim][Lac], [bmim][ac] and [emim][pro] ionic liquids using two-parts combined models [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 521-527. |
[14] | Haiyan Jiang, Lu Bai, Bingbing Yang, Shaojuan Zeng, Haifeng Dong, Xiangping Zhang. The effect of protic ionic liquids incorporation on CO2 separation performance of Pebax-based membranes [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 169-176. |
[15] | Mingdong Sun, Zhengyun Bian, Weiwei Cui, Xiaolong Zhao, Shu Dong, Xuebin Ke, Yu Zhou, Jun Wang. Pyrolyzing soft template-containing poly(ionic liquid) into hierarchical N-doped porous carbon for electroreduction of carbon dioxide [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 192-201. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 199
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 506
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||