[1] A.M.Kloxin, A.M. Kasko, C.N. Salinas, K.S. Anseth, Photodegradable hydrogels for dynamic tuning of physical and chemical properties, Science 324(5923) (2009) 59-63. [2] J.S. Suk, Q. Xu, N. Kim, J. Hanes, L.M. Ensign, PEGylation as a strategy for improving nanoparticle-based drug and gene delivery, Adv. Drug Deliv. Rev. 99(2016) 28-51. [3] M.A.C. Stuart, W.T. Huck, J. Genzer, M. Müller, C. Ober, M. Stamm, G.B. Sukhorukov, I. Szleifer, V.V. Tsukruk, M. Urban, Emerging applications of stimuli-responsive polymer materials, Nat. Mater. 9(2) (2010) 101-113. [4] A. Kumari, S.K. Yadav, S.C. Yadav, Biodegradable polymeric nanoparticles based drug delivery systems, Colloids Surf. B:Biointerfaces 75(1) (2010) 1-18. [5] M. Elsabahy, K.L. Wooley, Design of polymeric nanoparticles for biomedical delivery applications, Chem. Soc. Rev. 41(7) (2012) 2545-2561. [6] Z. Xu, Y. Li, B. Zhang, T. Purkait, A. Alb, B.S. Mitchell, S.M. Grayson, M.J. Fink, Watersoluble PEGylated silicon nanoparticles and their assembly into swellable nanoparticle aggregates, J. Nanopart. Res. 17(1) (2015) 56. [7] R. Langer, D.A. Tirrell, Designing materials for biology and medicine, Nature 428(6982) (2004) 487-492. [8] L.J. De Cock, S. De Koker, B.G. De Geest, J. Grooten, C. Vervaet, J.P. Remon, G.B. Sukhorukov, M.N. Antipina, Polymeric multilayer capsules in drug delivery, Angew. Chem. Int. Ed. 49(39) (2010) 6954-6973. [9] K.M. Nampoothiri, N.R. Nair, R.P. John, An overview of the recent developments in polylactide (PLA) research, Bioresour. Technol. 101(22) (2010) 8493-8501. [10] F. Danhier, E. Ansorena, J.M. Silva, R. Coco, A. Le Breton, V. Préat, PLGA-based nanoparticles:An overview of biomedical applications, J. Control. Release 161(2) (2012) 505-522. [11] G. Joshi, A. Kumar, K. Sawant, Enhanced bioavailability and intestinal uptake of Gemcitabine HCl loaded PLGA nanoparticles after oral delivery, Eur. J. Pharm. Sci. 60(2014) 80-89. [12] E. M Saffer, G. N Tew, S. R Bhatia, Poly(lactic acid)-poly(ethylene oxide) block copolymers:New directions in self-assembly and biomedical applications, Curr. Med. Chem. 18(36) (2011) 5676-5686. [13] R. Gref, P. Quellec, A. Sanchez, P. Calvo, E. Dellacherie, M.J. Alonso, Development and characterization of CyA-loaded poly (lactic acid)-poly (ethylene glycol) PEG micro- and nanoparticles. Comparison with conventional PLA particulate carriers, Eur. J. Pharm. Biopharm. 51(2) (2001) 111-118. [14] Z. Zhao, J. Wang, H. Mao, K.W. Leong, Polyphosphoesters in drug and gene delivery, Adv. Drug Deliv. Rev. 55(4) (2003) 483-499. [15] M. Huang, S. Li, M. Vert, Synthesis and degradation of PLA-PCL-PLA triblock copolymer prepared by successive polymerization of ε-caprolactone and DL-lactide, Polymer 45(26) (2004) 8675-8681. [16] A.N.F. Versypt, D.W. Pack, R.D. Braatz, Mathematical modeling of drug delivery from autocatalytically degradable PLGA microspheres-A review, J. Control. Release 165(1) (2013) 29-37. [17] D.J. Hines, D.L. Kaplan, Poly(lactic-co-glycolic) acid-controlled-release systems:Experimental and modeling insights, Crit. Rev. Ther. Drug Carrier Syst. 30(3) (2013) 257-276. [18] Y.S. Jo, M. Kim, D.K. Kim, C. Kim, Y. Jeong, K. Kim, M. Muhammed, Mathematical modelling on the controlled-release of indomethacin-encapsulated poly (lactic acid-co-ethylene oxide) nanospheres, Nanotechnology 15(9) (2004) 1186. [19] M. Polakovič, T. Görner, R. Gref, E. Dellacherie, Lidocaine loaded biodegradable nanospheres:Ⅱ. Modelling of drug release, J. Control. Release 60(2) (1999) 169-177. [20] J. Zhong, B. Yang, R. Chen, Q. Zhang, W. Huang, C. Gu, C. Chen, A computer simulation study on the diffusion and permeation of dimethylformamide/water mixtures through poly(vinyl alcohol)/poly(acrylic acid) blend membranes, Chem. Eng. Res. Des. 94((2015) 681-690. [21] J. Lange, F.G. de Souza, M. Nele, F.W. Tavares, I.S.V. Segtovich, G.C.Q. Da Silva, J.C. Pinto, Molecular dynamic simulation of oxaliplatin diffusion in poly(lactic acid-coglycolic acid). Part A:Parameterization and validation of the force-field CVFF, Macromol. Theory Simul. 25(1) (2016) 45-62. [22] D. Hofmann, L. Fritz, J. Ulbrich, D. Paul, Molecular simulation of small molecule diffusion and solution in dense amorphous polysiloxanes and polyimides, Comput. Theor. Polym. Sci. 10(5) (2000) 419-436. [23] D. Pavel, R. Shanks, Molecular dynamics simulation of diffusion of O2 and CO2 in amorphous poly(ethylene terephthalate) and related aromatic polyesters, Polymer 44(21) (2003) 6713-6724. [24] D. Pavel, R. Shanks, Molecular dynamics simulation of diffusion of O2 and CO2 in blends of amorphous poly(ethylene terephthalate) and related polyesters, Polymer 46(16) (2005) 6135-6147. [25] N. Van der Vegt, Temperature dependence of gas transport in polymer melts:Molecular dynamics simulations of CO2 in polyethylene, Macromolecules 33(8) (2000) 3153-3160. [26] D. Hofmann, L. Fritz, J. Ulbrich, C. Schepers, M. Böhning, Detailed-atomistic molecular modeling of small molecule diffusion and solution processes in polymeric membrane materials, Macromol. Theory Simul. 9(6) (2000) 293-327. [27] D. Luo, Z. Zhao, L. Zhang, Q. Wang, J. Wang, On the structure of molecularly imprinted polymers by modifying charge on functional groups through molecular dynamics simulations, Mol. Simul. 40(6) (2014) 431-438. [28] Z. Zhao, Q. Wang, L. Zhang, T. Wu, Structured water and water-polymer interactions in hydrogels of molecularly imprinted polymers, J. Phys. Chem. B 112(25) (2008) 7515-7521. [29] C. Forrey, D.M. Saylor, J.S. Silverstein, J.F. Douglas, E.M. Davis, Y.A. Elabd, Prediction and validation of diffusion coefficients in a model drug delivery system using microsecond atomistic molecular dynamics simulation and vapour sorption analysis, Soft Matter 10(38) (2014) 7480-7494. [30] Z. Zhao, Q. Wang, L. Zhang, Y. Liu, A different diffusion mechanism for drug molecules in amorphous polymers, J. Phys. Chem. B 111(17) (2007) 4411-4416. [31] Z. Zhao, Q. Wang, L. Zhang, Size effect on competition of two diffusion mechanisms for drug molecules in amorphous polymers, J. Phys. Chem. B 111(46) (2007) 13167-13172. [32] B. Hess, C. Kutzner, D. Van Der Spoel, E. Lindahl, GROMACS 4:Algorithms for highly efficient, load-balanced, and scalable molecular simulation, J. Chem. Theory Comput. 4(3) (2008) 435-447. [33] J.H. McAliley, D.A. Bruce, Development of force field parameters for molecular simulation of polylactide, J. Chem. Theory Comput. 7(11) (2011) 3756-3767. [34] U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, L.G. Pedersen, A smooth particle mesh Ewald method, J. Chem. Phys. 103(19) (1995) 8577-8593. [35] W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys. 79(2) (1983) 926-935. [36] D. van der Spoel, P.J. van Maaren, H.J. Berendsen, A systematic study of water models for molecular simulation:Derivation of water models optimized for use with a reaction field, J. Chem. Phys. 108(24) (1998) 10220-10230. [37] R. Auras, B. Harte, S. Selke, An overview of polylactides as packaging materials, Macromol. Biosci. 4(9) (2004) 835-864. [38] S. Sarupria, S. Garde, Quantifying water density fluctuations and compressibility of hydration shells of hydrophobic solutes and proteins, Phys. Rev. Lett. 103(3) (2009) 037803. |