Chinese Journal of Chemical Engineering ›› 2019, Vol. 27 ›› Issue (5): 1219-1229.DOI: 10.1016/j.cjche.2018.09.004
• Materials and Product Engineering • Previous Articles Next Articles
Mohammad El Wali1, Saeed Rahimpour Golroudbary1, Andrzej Kraslawski1,2
Received:
2018-04-30
Revised:
2018-08-17
Online:
2019-06-27
Published:
2019-05-28
Contact:
Saeed Rahimpour Golroudbary
Mohammad El Wali1, Saeed Rahimpour Golroudbary1, Andrzej Kraslawski1,2
通讯作者:
Saeed Rahimpour Golroudbary
Mohammad El Wali, Saeed Rahimpour Golroudbary, Andrzej Kraslawski. Impact of recycling improvement on the life cycle of phosphorus[J]. Chinese Journal of Chemical Engineering, 2019, 27(5): 1219-1229.
Mohammad El Wali, Saeed Rahimpour Golroudbary, Andrzej Kraslawski. Impact of recycling improvement on the life cycle of phosphorus[J]. 中国化学工程学报, 2019, 27(5): 1219-1229.
[1] Y. Jin, J. Kim, B. Guillaume, Review of critical material studies, Resour. Conserv. Recycl. 113(2016) 77-87. [2] T.E. Graedel, R. Barr, C. Chandler, T. Chase, J. Choi, L. Christoffersen, E. Friedlander, C. Henly, C. Jun, N.T. Nassar, et al., Methodology of metal criticality determination, Environ. Sci. Technol. 46(2012) 1063-1070. [3] E.U. Commission, et al., Report on Critical Raw Materials for the EU, Retrieved April. 30(2014) 2015. [4] L. Erdmann, T.E. Graedel, Criticality of non-fuel minerals:A review of major approaches and analyses, Environ. Sci. Technol. 45(2011) 7620-7630. [5] R. Hoogmartens, J. Eyckmans, S. Van Passel, Landfill taxes and enhanced waste management:Combining valuable practices with respect to future waste streams, Waste Manag. 55(2016) 345-354. [6] E. Restrepo, A.N. Løvik, P. Wäger, R. Widmer, R. Lonka, D.B. Müller, Stocks, flows, and distribution of critical metals in embedded electronics in passenger vehicles, Environ. Sci. Technol. 51(2017) 1129-1139. [7] E. Schwegler, Crosscutting research in the Critical Materials Institute, Meet. Abstr 2017, p. 1675. [8] S.A. Northey, G.M. Mudd, T.T. Werner, Unresolved complexity in assessments of mineral resource depletion and availability, Nat. Resour. Res. (2017) 1-15. [9] T.E. Graedel, E.M. Harper, N.T. Nassar, B.K. Reck, On the materials basis of modern society, Proc. Natl. Acad. Sci. 112(2015) 6295-6300. [10] M. Frenzel, J. Kullik, M.A. Reuter, J. Gutzmer, Raw material ‘criticality’-Sense or nonsense? J. Phys. D. Appl. Phys. 50(2017) 123002. [11] EU Commission, Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, Appl. Counc. Regul. COM (2017), 2017. [12] C.M. Lwin, M. Murakami, S. Hashimoto, The implications of allocation scenarios for global phosphorus flow from agriculture and wastewater, Resour. Conserv. Recycl. 122(2017) 94-105. [13] R. Koppelaar, H.P. Weikard, Assessing phosphate rock depletion and phosphorus recycling options, Glob. Environ. Chang. 23(2013) 1454-1466. [14] K.C. van Dijk, J.P. Lesschen, O. Oenema, Phosphorus flows and balances of the European Union Member States, Sci. Total Environ. 542(2016) 1078-1093. [15] F.-W. Wellmer, R.W. Scholz, Peak minerals:What can we learn from the history of mineral economics and the cases of gold and phosphorus? Miner. Econ. 30(2017) 73-93. [16] D. Cordell, S. White, Sustainable phosphorus measures:Strategies and technologies for achieving phosphorus security, Agronomy 3(2013) 86-116. [17] M. Mew, Future Phosphate Rock Production-Peak or Plateau, Fertecon Res. Cent. Limited, 2011 Available Online http://www.Fertecon-Frc.Info/Page15.htm, Accessed date:10 March 2011. [18] R.W. Scholz, A.E. Ulrich, M. Eilittä, A. Roy, Sustainable use of phosphorus:A finite resource, Sci. Total Environ. 461(2013) 799-803. [19] G. Calvo, A. Valero, A. Valero, Assessing maximum production peak and resource availability of non-fuel mineral resources:Analyzing the influence of extractable global resources, Resour. Conserv. Recycl. 125(2017) 208-217. [20] M. de Ridder, S. De Jong, J. Polchar, S. Lingemann, Risks and Opportunities in the Global Phosphate Rock Market:Robust Strategies in Times of Uncertainty, Hague Centre for Strategic Studies, 2012. [21] J.A. Ober, Mineral Commodity Summaries 2017, 2017. [22] O.F. Schoumans, F. Bouraoui, C. Kabbe, O. Oenema, K.C. van Dijk, Phosphorus management in Europe in a changing world, Ambio 44(2015) 180-192. [23] R.W. Scholz, F.W. Wellmer, Approaching a dynamic view on the availability of mineral resources:What we may learn from the case of phosphorus? Glob. Environ. Chang. (2013), https://doi.org/10.1016/j.gloenvcha.2012.10.013. [24] P.J.A. Withers, K.C. van Dijk, T.-S.S. Neset, T. Nesme, O. Oenema, G.H. Rubæk, O.F. Schoumans, B. Smit, S. Pellerin, Stewardship to tackle global phosphorus inefficiency:The case of Europe, Ambio 44(2015) 193-206. [25] C. Fischer, B. Kjaer, Recycling and Sustainable Materials Management, Copenhagen Resour. Inst, 2012. [26] E. Commission, Europe 2020:A Strategy for Smart, Sustainable and Inclusive Growth:Communication from the Commission, Publications Office of the European Union, 2010. [27] J. Trochu, A. Chaabane, M. Ouhimmou, Reverse logistics network redesign under uncertainty for wood waste in the CRD industry, Resour. Conserv. Recycl. 128(2018) 32-47. [28] J. Busch, J.K. Steinberger, D.A. Dawson, P. Purnell, K. Roelich, Managing critical materials with a technology-specific stocks and flows model, Environ. Sci. Technol. 48(2014) 1298-1305. [29] E.D. Roy, Phosphorus recovery and recycling with ecological engineering:A review, Ecol. Eng 98(2017) 213-227. [30] D.L. Childers, J. Corman, M. Edwards, J.J. Elser, Sustainability challenges of phosphorus and food:Solutions from closing the human phosphorus cycle, Bioscience 61(2011) 117-124. [31] D. Cordell, J.-O. Drangert, S. White, The story of phosphorus:Global food security and food for thought, Glob. Environ. Chang. 19(2009) 292-305. [32] J. Mateo-Sagasta, L. Raschid-Sally, A. Thebo, Global wastewater and sludge production, treatment and use, Wastewater, Springer 2015, pp. 15-38. [33] Y. Kalmykova, R. Harder, H. Borgestedt, I. Svanäng, Pathways and management of phosphorus in urban areas, J. Ind. Ecol. 16(2012) 928-939. [34] J. Cooper, C. Carliell-Marquet, A substance flow analysis of phosphorus in the UK food production and consumption system, Resour. Conserv. Recycl. 74(2013) 82-100. [35] Y. Kalmykova, K.K. Fedje, Phosphorus recovery from municipal solid waste incineration fly ash, Waste Manag. 33(2013) 1403-1410. [36] R.B. Chowdhury, G.A. Moore, A.J. Weatherley, M. Arora, Key sustainability challenges for the global phosphorus resource, their implications for global food security, and options for mitigation, J. Clean. Prod. 140(2017) 945-963. [37] T.F.H. Theobald, M. Schipper, J. Kern, Phosphorus flows in Berlin-Brandenburg, a regional flow analysis, Resour. Conserv. Recycl. 112(2016) 1-14. [38] B. Li, I. Boiarkina, B. Young, W. Yu, Substance flow analysis of phosphorus within New Zealand and comparison with other countries, Sci. Total Environ. 527(2015) 483-492. [39] M. Klinglmair, C. Lemming, L.S. Jensen, H. Rechberger, T.F. Astrup, C. Scheutz, Phosphorus in Denmark:National and regional anthropogenic flows, Resour. Conserv. Recycl. 105(2015) 311-324. [40] Y. Liu, G. Villalba, R.U. Ayres, H. Schroder, Global phosphorus flows and environmental impacts from a consumption perspective, J. Ind. Ecol. 12(2008) 229-247. [41] D.P. Van Vuuren, A.F. Bouwman, A.H.W. Beusen, Phosphorus demand for the 1970-2100 period:A scenario analysis of resource depletion, Glob. Environ. Chang. 20(2010) 428-439. [42] M. Chen, T.E. Graedel, A half-century of global phosphorus flows, stocks, production, consumption, recycling, and environmental impacts, Glob. Environ. Chang. 36(2016) 139-152. [43] R.W. Scholz, F.W. Wellmer, Losses and use efficiencies along the phosphorus cycle. Part 1:Dilemmata and losses in the mines and other nodes of the supply chain, Resour. Conserv. Recycl. 105(2015) 259-274. [44] C. Ott, H. Rechberger, The European phosphorus balance, Resour. Conserv. Recycl. 60(2012) 159-172. [45] M. Garcia-Holguera, O.G. Clark, A. Sprecher, S. Gaskin, Ecosystem biomimetics for resource use optimization in buildings, Build. Res. Inf. 44(2016) 263-278. [46] N. Kollikkathara, H. Feng, D. Yu, A system dynamic modeling approach for evaluating municipal solid waste generation, landfill capacity and related cost management issues, Waste Manag. 30(2010) 2194-2203. [47] A.-K. Modin-Edman, I. Öborn, H. Sverdrup, FARMFLOW-A dynamic model for phosphorus mass flow, simulating conventional and organic management of a Swedish dairy farm, Agric. Syst. 94(2007) 431-444. [48] S. Goddek, C.A. Espinal, B. Delaide, M.H. Jijakli, Z. Schmautz, S. Wuertz, K.J. Keesman, Navigating towards decoupled aquaponic systems:A system dynamics design approach, Water 8(2016) 303. [49] J.L. Treadwell, O.G. Clark, E.M. Bennett, Dynamic simulation of phosphorus flows through Montreal's food and waste systems, Resour. Conserv. Recycl. 131(2018) 122-133. [50] S.C. Brailsford, N.A. Hilton, A Comparison of Discrete Event Simulation and System Dynamics for Modelling Health Care Systems, 2001. [51] S.R. Golroudbary, S.M. Zahraee, System dynamics model for optimizing the recycling and collection of waste material in a closed-loop supply chain, Simul. Model. Pract. Theory 53(2015) 88-102. [52] A. Sweetser, A comparison of system dynamics (SD) and discrete event simulation (DES), 17th Int. Conf. Syst. Dyn. Soc 1999, pp. 20-23. [53] B. Cieślik, P. Konieczka, A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of "no solid waste generation" and analytical methods, J. Clean. Prod. 142(2017) 1728-1740. [54] B.K. Mayer, L.A. Baker, T.H. Boyer, P. Drechsel, M. Gifford, M.A. Hanjra, P. Parameswaran, J. Stoltzfus, P. Westerhoff, B.E. Rittmann, Total value of phosphorus recovery, Environ. Sci. Technol. 50(2016) 6606-6620. [55] J.W. Forrester, Industrial dynamics, J. Oper. Res. Soc. 48(1997) 1037-1041. [56] J. Sterman, R. Oliva, K. Linderman, E. Bendoly, System dynamics perspectives and modeling opportunities for research in operations management, J. Oper. Manag. (2015) 1-5. [57] J.P. Torres, M. Kunc, F. O'Brien, Supporting strategy using system dynamics, Eur. J. Oper. Res. 260(2017) 1081-1094. [58] G.S. Metson, G.K. MacDonald, D. Haberman, T. Nesme, E.M. Bennett, Feeding the corn belt:Opportunities for phosphorus recycling in US agriculture, Sci. Total Environ. 542(2016) 1117-1126. [59] N. Gilbert, Environment:The disappearing nutrient, Nat. News 461(2009) 716-718. [60] Y. Sun, Q. Zhang, Y. Han, P. Gao, G. Li, Comprehensive utilization of iron and phosphorus from high-phosphorus refractory iron ore, JOM 70(2018) 144-149. [61] R.W. Scholz, D.T. Hellums, A.A. Roy, Global sustainable phosphorus management:A transdisciplinary venture, Curr. Sci. 108(2015) 1237-1246. [62] S. Belboom, C. Szöcs, A. Léonard, Environmental impacts of phosphoric acid production using di-hemihydrate process:A Belgian case study, J. Clean. Prod. 108(2015) 978-986. [63] G. Van Hoof, M. Fan, A. Lievens, Use of product and ingredient tools to assess the environmental profile of automatic dishwashing detergents, J. Clean. Prod. 142(2017) 3536-3543. [64] R. Palmeira-de-Oliveira, A. Palmeira-de-Oliveira, C. Gaspar, S. Silvestre, J. Martinez-de-Oliveira, M.H. Amaral, L. Breitenfeld, Sodium tripolyphosphate:An excipient with intrinsic in vitro anti-Candida activity, Int. J. Pharm. 421(2011) 130-134. [65] E. Ritz, K. Hahn, M. Ketteler, M.K. Kuhlmann, J. Mann, Phosphate additives in food-A health risk, Dtsch Arztebl Int 109(2012) 49. [66] A. Makara, M. Smol, J. Kulczycka, Z. Kowalski, Technological, environmental and economic assessment of sodium tripolyphosphate production-A case study, J. Clean. Prod. 133(2016) 243-251. [67] EU Commission, Report from the Commission to the European Parliament and the Council, Appl. Counc. Regul. 21572010, p. 2001. [68] D. Cordell, A. Rosemarin, J.J. Schröder, A.L. Smit, Towards global phosphorus security:A systems framework for phosphorus recovery and reuse options, Chemosphere 84(2011) 747-758. [69] E. Ortiz-Reyes, R.P. Anex, A life cycle impact assessment method for freshwater eutrophication due to the transport of phosphorus from agricultural production, J. Clean. Prod. 177(2018) 474-482. [70] O.F. Schoumans, W.J. Chardon, M.E. Bechmann, C. Gascuel-Odoux, G. Hofman, B. Kronvang, G.H. Rubæk, B. Ulén, J.-M. Dorioz, Mitigation options to reduce phosphorus losses from the agricultural sector and improve surface water quality:A review, Sci. Total Environ. 468(2014) 1255-1266. [71] I. Noya, S. González-García, J. Bacenetti, M. Fiala, M.T. Moreira, Environmental impacts of the cultivation-phase associated with agricultural crops for feed production, J. Clean. Prod 172(2018) 3721-3733. [72] A. Mottet, C. Haan, A. Falcucci, G. Tempio, C. Opio, P. Gerber, Livestock:On our plates or eating at our table? A new analysis of the feed/food debate, Glob. Food Sec. 14(2017) 1-8. [73] N. Yokokawa, E. Kikuchi-Uehara, H. Sugiyama, M. Hirao, Framework for analyzing the effects of packaging on food loss reduction by considering consumer behavior, J. Clean. Prod. 174(2018) 26-34. [74] A. Stenmarck, C. Jensen, T. Quested, G. Moates, M. Buksti, B. Cseh, S. Juul, A. Parry, A. Politano, B. Redlingshofer, et al., Estimates of European Food Waste Levels, IVL Swedish Environmental Research Institute, 2016. [75] EU Commission, Closing the loop-An EU action plan for the Circular Economy, Commun. from Comm. to Eur. Parliam. Counc. Eur. Econ. Soc. Comm. Comm. Reg. COM. 6142015, p. 2015. [76] H. Kroiss, H. Rechberger, L. Egle, Phosphorus in water quality and waste management, Integr. Waste Manag. Ⅱ, InTech, 2011. [77] A. Cesaro, V. Belgiorno, M. Guida, Compost from organic solid waste:Quality assessment and European regulations for its sustainable use, Resour. Conserv. Recycl. 94(2015) 72-79. [78] L. Loyon, Overview of manure treatment in France, Waste Manag. 61(2017) 516-520. [79] H. Blöch, European Union legislation on wastewater treatment and nutrients removal, Proc. IWA Spec. Conf. "Nutrient Manag. Wastewater Treat. Recycl. Streams", Lemtech Konsult, Krakow, Pol, 2005. [80] S. Hukari, L. Hermann, A. Nättorp, From wastewater to fertilisers-Technical overview and critical review of European legislation governing phosphorus recycling, Sci. Total Environ. 542(2016) 1127-1135. [81] Y. Barlas, Formal aspects of model validity and validation in system dynamics, Syst. Dyn. Rev. 12(1996) 183-210. [82] H. Wu, Y. Zhang, Z. Yuan, L. Gao, Phosphorus flow management of cropping system in Huainan, China, 1990-2012, J. Clean. Prod. 112(2016) 39-48. [83] A. Leon, K. Kohyama, Estimating nitrogen and phosphorus losses from lowland paddy rice fields during cropping seasons and its application for life cycle assessment, J. Clean. Prod. 164(2017) 963-979. [84] B.J. Pearce, M. Chertow, Scenarios for achieving absolute reductions in phosphorus consumption in Singapore, J. Clean. Prod. 140(2017) 1587-1601. [85] J. Álvarez, M. Roca, C. Valderrama, J.L. Cortina, A phosphorous flow analysis in Spain, Sci. Total Environ. 612(2018) 995-1006. [86] L. Egle, H. Rechberger, J. Krampe, M. Zessner, Phosphorus recovery from municipal wastewater:An integrated comparative technological, environmental and economic assessment of P recovery technologies, Sci. Total Environ. 571(2016) 522-542. [87] J. Zhao, D. Wang, X. Li, Q. Yang, H. Chen, Y. Zhong, H. An, G. Zeng, An efficient process for wastewater treatment to mitigate free nitrous acid generation and its inhibition on biological phosphorus removal, Sci. Rep. 5(2015) 8602. [88] L. Shu, P. Schneider, V. Jegatheesan, J. Johnson, An economic evaluation of phosphorus recovery as struvite from digester supernatant, Bioresour. Technol. 97(2006) 2211-2216. [89] K. Suzuki, Y. Tanaka, K. Kuroda, D. Hanajima, Y. Fukumoto, T. Yasuda, M. Waki, Removal and recovery of phosphorous from swine wastewater by demonstration crystallization reactor and struvite accumulation device, Bioresour. Technol. 98(2007) 1573-1578. [90] P.S. Caddarao, S. Garcia-Segura, F.C. Ballesteros Jr., Y.-H. Huang, M.-C. Lu, Phosphorous recovery by means of fluidized bed homogeneous crystallization of calcium phosphate. Influence of operational variables and electrolytes on brushite homogeneous crystallization, J. Taiwan Inst. Chem. Eng. 83(2018) 124-132. [91] H. Zou, Y. Wang, Phosphorus removal and recovery from domestic wastewater in a novel process of enhanced biological phosphorus removal coupled with crystallization, Bioresour. Technol. 211(2016) 87-92. [92] D. Cordell, The Story of Phosphorus:Sustainability Implications of Global Phosphorus Scarcity for Food Security, PhD Thesis, Linkoping University, Sweden, 2010. [93] O.F. Schoumans, W.H. Rulkens, O. Oenema, P.A.I. Ehlert, Phosphorus Recovery from Animal Manure:Technical Opportunities and Agro-economical Perspectives, 2010. [94] J.J. Schroder, D. Cordell, A.L. Smit, A. Rosemarin, Sustainable use of phosphorus:EU tender ENV, Wageningen University & Research, B1/ETU/2009/0025, 2010. [95] A.L. Mourad, E.E.C. Garcia, G.B. Vilela, F. Von Zuben, Influence of recycling rate increase of aseptic carton for long-life milk on GWP reduction, Resour. Conserv. Recycl. 52(2008) 678-689. [96] A. Giannis, M. Chen, K. Yin, H. Tong, A. Veksha, Application of system dynamics modeling for evaluation of different recycling scenarios in Singapore, J. Mater. Cycles Waste Manage. 19(2017) 1177-1185. [97] C. Kabbe, C. Remy, F. Kraus, Review of Promising Methods for Phosphorus Recovery & Recycling from Wastewater, International Fertiliser Soc, 2015. [98] C. Kabbe, F. Kraus, P recovery:From evolution to revolution, Fertil. Int. 479(2017) 37-41. [99] R.W. Scholz, F.-W. Wellmer, Although there is no physical short-term scarcity of phosphorus, its resource efficiency should be improved, J. Ind. Ecol, Wiley Online, 2018, https://doi.org/10.1111/jiec.12750. [100] P. Guedes, N. Couto, L.M. Ottosen, A.B. Ribeiro, Phosphorus recovery from sewage sludge ash through an electrodialytic process, Waste Manag. 34(2014) 886-892. [101] T. Schütte, C. Niewersch, T. Wintgens, S. Yüce, Phosphorus recovery from sewage sludge by nanofiltration in diafiltration mode, J. Membr. Sci. 480(2015) 74-82. [102] USGS, USGS Minerals Yearbook, Phosphate Rock, USGS. 2015 USGS Miner. Yearb. Phosphate Rock. Available https://Minerals.Usgs.Gov/Minerals/Pubs/Commodity/Phosphate_rock/Myb1-2015-Phosp.pdf. |
[1] | Jinlong Liu, Chenye Wang, Xingrui Wang, Chen Zhao, Huiquan Li, Ganyu Zhu, Jianbo Zhang. Reconstruction and recovery of anatase TiO2 from spent selective catalytic reduction catalyst by NaOH hydrothermal method [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 53-60. |
[2] | Xinxin Li, Hongwei Shao, Shichao Zhang, Yong Li, Jingjing Gu, Qiang Huang, Jin Ran. Two dimensional MoS2 finding its way towards constructing high-performance alkaline recovery membranes [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 155-164. |
[3] | Jindong Dai, Chi Zhai, Jiali Ai, Guangren Yu, Haichao Lv, Wei Sun, Yongzhong Liu. A cellular automata framework for porous electrode reconstruction and reaction-diffusion simulation [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 262-274. |
[4] | Yong Xu, Qingbai Chen, Yang Gao, Jianyou Wang, Huiqing Fan, Fei Zhao. Performance comparison of lithium fractionation from magnesium via continuous selective nanofiltration/electrodialysis [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 42-50. |
[5] | Runze Chen, Yuran Chen, Xuemin Liang, Yapeng Kong, Yangyang Fan, Quan Liu, Zhenyu Yang, Feiying Tang, Johnny Muya Chabu, Maru Dessie Walle, Liqiang Wang. Oxidative exfoliation of spent cathode carbon: A two-in-one strategy for its decontamination and high-valued application [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 262-269. |
[6] | Chaozhi Zhang, Qianqian Shen, Yanxiao Su, Ruihua Jin. Efficient heavy metal recycling and water reuse from industrial wastewater using new reusable and inexpensive polyphenylene sulfide derivatives [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 89-102. |
[7] | Chaobo Zhang, Xiaoyong Yang, Jian Dai, Wenxia Liu, Hang Yang, Zhishan Bai. Efficient extraction of phenol from wastewater by ionic micro-emulsion method: Anionic and cationic [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 137-145. |
[8] | Yujia Cui, Zhiqiang Tan, Yanan Wang, Shuxian Shi, Xiaonong Chen. One-step crosslinking preparation of tannic acid particles for the adsorption and separation of cationic dyes [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 309-318. |
[9] | Zhenfu Wang, Jie Gao, Qinghong Shi, Xiaoyan Dong, Yan Sun. Facile purification and immobilization of organophosphorus hydrolase on protein-inorganic hybrid phosphate nanosheets [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 119-125. |
[10] | Aiqin Gao, Xiang Luo, Huanghuang Chen, Aiqin Hou, Hongjuan Zhang, Kongliang Xie. Design of the reactive dyes containing large planar multi-conjugated systems and their application in non-aqueous dyeing [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 264-271. |
[11] | Miaomiao Zhao, Degang Ma, Yu Ye. Adsorption, separation and recovery properties of blocky zeolite-biochar composites for remediation of cadmium contaminated soil [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 272-279. |
[12] | Yong Niu, Xiaowu Peng, Jinfeng Li, Yuze Zhang, Fugen Song, Dong Shi, Lijuan Li. Recovery of Li2CO3 and FePO4 from spent LiFePO4 by coupling technics of isomorphic substitution leaching and solvent extraction [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 306-315. |
[13] | Chun Deng, Xuantong Lu, Qixin Zhang, Jian Liu, Jui-Yuan Lee, Xiao Feng. Fuzzy optimization design of multicomponent refinery hydrogen network [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 125-139. |
[14] | Xin Ren, Li Leng, Yueqiang Cao, Jing Zhang, Xuezhi Duan, Xueqing Gong, Jinghong Zhou, Xinggui Zhou. Enhanced recycling performance of bimetallic Ir-Re/SiO2 catalyst by amberlyst-15 for glycerol hydrogenolysis [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 171-181. |
[15] | Jingsi Cui, Huanxi Xu, Yanfeng Ding, Jingjing Tian, Xu Zhang, Guanping Jin. Recovery of lithium using H4Mn3.5Ti1.5O12/reduced graphene oxide/polyacrylamide composite hydrogel from brine by Ads-ESIX process [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 20-28. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 295
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 388
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||