Chinese Journal of Chemical Engineering ›› 2019, Vol. 27 ›› Issue (7): 1485-1497.DOI: 10.1016/j.cjche.2018.09.015
• Selected Papers on Sustainable Chemical Process Systems • Previous Articles Next Articles
Lixia Kang1, Yongzhong Liu1,2
Received:
2018-07-17
Online:
2019-10-14
Published:
2019-07-28
Contact:
Yongzhong Liu
Lixia Kang1, Yongzhong Liu1,2
通讯作者:
Yongzhong Liu
Lixia Kang, Yongzhong Liu. Synthesis of flexible heat exchanger networks: A review[J]. Chinese Journal of Chemical Engineering, 2019, 27(7): 1485-1497.
Lixia Kang, Yongzhong Liu. Synthesis of flexible heat exchanger networks: A review[J]. 中国化学工程学报, 2019, 27(7): 1485-1497.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2018.09.015
[1] I.E. Grossmann, R.M. Apap, B.A. Calfa, P. Garcia-Herreros, Q. Zhang, Mathematical programming techniques for optimization under uncertainty and their application in process systems engineering, Theor. Found. Chem. Eng. 51(6) (2017) 893-909. [2] A.H. Masso, D.F. Rudd, The synthesis of system designs. Ⅱ. Heuristic structuring, AIChE J. 15(1) (1969) 10-17. [3] S.A. Papoulias, I.E. Grossmann, A structural optimization approach in process synthesis-Ⅱ. Heat recovery networks, Comput. Chem. Eng. 7(6) (1983) 707-721. [4] C.A. Floudas, A.R. Ciric, I.E. Grossmann, Automatic synthesis of optimum heat exchanger network configurations, AIChE J. 32(2) (1986) 276-290. [5] T.F. Yee, I.E. Grossmann, Simultaneous optimization models for heat integration-Ⅱ. Heat exchanger network synthesis, Comput. Chem. Eng. 14(10) (1990) 1165-1184. [6] J.J. Klemeš, Z. Kravanja, Forty years of heat integration:Pinch Analysis (PA) and Mathematical Programming (MP), Curr. Opin. Chem. Eng. 2(4) (2013) 461-474. [7] T. Gundersen, L. Naess, The synthesis of cost optimal heat exchanger networks-An industrial review of the state-of -the-art, Heat Recov. Syst. CHP 10(4) (1990) 301-328. [8] M. Morar, P.S. Agachi, Review:Important contributions in development and improvement of the heat integration techniques, Comput. Chem. Eng. 34(8) (2010) 1171-1179. [9] F.V. Lima, Z. Jia, M. Ierapetritou, C. Georgakis, Similarities and differences between the concepts of operability and flexibility:The steady-state case, AIChE J. 56(3) (2010) 702-716. [10] P. Tangnanthanakana, K. Siemanond, Comparison of sequential and simultaneous approaches for multiperiod heat exchanger network synthesis and application for crude preheat train, Chem. Eng. Trans. 39(2014) 199-204. [11] D. Toimil, A. Gomez, Review of metaheuristics applied to heat exchanger network design, Int. Trans. Oper. Res. 24(1-2) (2017) 7-26. [12] B.K. Sreepathi, G.P. Rangaiah, Review of heat exchanger network retrofitting methodologies and their applications, Ind. Eng. Chem. Res. 53(28) (2014) 11205-11220. [13] I.E. Grossmann, D.A. Straub, Recent developments in the evaluation and optimization of fexible chemical processes, Batch Process. Syst. Eng. 143(1996) 495-516. [14] I.E. Grossmann, B.A. Calfa, P. Garcia-Herreros, Evolution of concepts and models for quantifying resiliency and flexibility of chemical processes, Comput. Chem. Eng. 70(2014) 22-34. [15] I.E. Grossmann, R.M. Apap, B.A. Calfa, P. García-Herreros, Q. Zhang, Recent advances in mathematical programming techniques for the optimization of process systems under uncertainty, Comput. Chem. Eng. 91((2016) 3-14. [16] R.L. McGalliard, A.W. Westerberg, Structural sensitivity analysis in design synthesis, Chem. Eng. J. 4(2) (1972) 127-138. [17] R. Ratnam, V.S. Patwardhan, Sensitivity analysis for heat exchanger networks, Chem. Eng. Sci. 46(2) (1991) 451-458. [18] B. Linnhoff, E. Kotjabasakis, Downstream paths for operable process design, Chem. Eng. Prog. 82(5) (1986) 23-28. [19] E. Kotjabasakis, B. Linnhoff, Sensitivity tables for the design of flexible processes (1)-How much contingency in heat exchanger networks is costeffective?, Chem Eng. Res. Des. 64(3) (1986) 197-211. [20] J. Zhu, Z. Han, M. Rao, K.T. Chuang, Identification of heat load loops and downstream paths in heat exchanger networks, Can. J. Chem. Eng. 74(6) (1996) 876-882. [21] G.Q. Li, B. Hua, B.L. Liu, G.R. Wu, Study for flexibility analysis method in heat exchangers network, in:Proceedings of the 2nd Biennial European Joint Conference on Engineering Systems Design and Analysis, American Society of Mechanical Engineers (ASME), London, England, 1994. [22] Z. Jin, D. Wang, X. Wei, Y. Wang, Analysis of heat exchanger network for temperature fluctuation, Adv. Mech. Eng. 7(9) (2015) 1-7. [23] S.A. El-Temtamy, E.M. Gabr, Flexible heat exchanger networks, Chem. Eng. 118(4) (2011) 32-38. [24] R. Farel, A. Bekhradi, Energy efficiency of industrial systems:A design research perspective, in:Proceedings of the ASME 2014 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, American Society of Mechanical Engineers (ASME), Buffalo, New York, USA, 2014. [25] S. Papastratos, A. Isambert, D. Depeyre, Computerized optimum design and dynamic simulation of heat exchanger networks, Comput. Chem. Eng. 17(1993) S329-S334. [26] L. Wang, B. Sundén, Detailed simulation of heat exchanger networks for flexibility consideration, Appl. Therm. Eng. 21(12) (2011) 1175-1184. [27] L.O. de Oliveira Filho, E.M. Queiroz, A.L.H. Costa, A matrix approach for steady-state simulation of heat exchanger networks, Appl. Therm. Eng. 27(14-15) (2007) 2385-2393. [28] S.H.A. Bakar, M.K.A. Hamid, S.R.W. Alwi, Z.A. Manan, Sensitivity analysis of industrial heat exchanger network design, Chem. Eng. Trans. 56(2017) 1489-1494. [29] M. Picon Nunez, G.T. Polley, Applying basic understanding of heat exchanger network behaviour to the problem of plant flexibility, Chem. Eng. Res. Des. 73(A8) (1995) 941-952. [30] B. Glemmestad, K.W. Mathisen, T. Gundersen, Optimal operation of heat exchanger networks based on structural information, Comput. Chem. Eng. 20(1996) S823-S828. [31] M. Picón-Núñez, J. Castro-Páez, F. Vizcaíno-García, Steady state simulation for the de-bottlenecking of heat recovery networks, Appl. Therm. Eng. 22(14) (2002) 1673-1687. [32] Z. Varga, I. Rabi, K.K. Stocz, Process simulation for improve energy efficiency, maximize asset utilization and increase in feed flexibility in a crude oil refinery, Chem. Eng. Trans. 21(2010) 1453-1458. [33] X.Ma,P.Yao,X.Luo,R.Wilfried, Synthesisofflexible multi-streamheat exchanger networks based on stream pseudo-temperature with genetic/simulated annealing algorithms, J. Chin. Inst. Chem. Eng. 38(3-4) (2007) 321-331. [34] P. Wang, B. Hua, Y. Qian, An improved approach to the design of flexible heat exchanger networks, Chem. Eng. Technol. 20(5) (1997) 309-312. [35] Y.H. Yang, J.P. Gong, Y.L. Huang, A simplified system model for rapid evaluation of disturbance propagation through a heat exchanger network, Ind. Eng. Chem. Res. 35(12) (1996) 4550-4558. [36] P.J. Heggs, F. Vizcaíno, A rigorous model for evaluation of disturbance propagation through heat exchanger networks, Chem. Eng. Res. Des. 80(3) (2002) 301-308. [37] J. Jezowski, A. Jezowska, Some remarks on heat exchanger networks targeting under uncertainty, Hung. J. Ind. Chem. 27(1) (1999) 17-24. [38] J.M. Jezowski, H.K. Shethna, R.J. Bochenek, F.J.L. Castillo, On extensions of _approaches for heat recovery calculations in integrated chemical process systems, Comput. Chem. 24(5) (2000) 595-601. [39] J. Jezowski, R. Bochenek, A. Jezowska, Pinch locations at heat capacity flowrate disturbances of streams for minimum utility cost heat exchanger networks, Appl. Therm. Eng. 20(15) (2000) 1481-1494. [40] R. Bochenek, J. Jezowski, Adaptive random search approach for retrofitting flexible heat exchanger networks, Hung. J. Ind. Chem. 27(2) (1999) 89-97. [41] J. Persson, T. Berntsson, Influence of seasonal variations on energy-saving opportunities in a pulp mill, Energy 34(10) (2009) 1705-1714. [42] C. Guha, A. Chaudhuri, Transient analysis of heat exchanger network, J. Inst. Eng. India Chem. Eng. Div. 87(2007) 51-59. [43] E.M. Al-Mutairi, O.J. Odejobi, Investigating the thermodynamics and economics of operating the thermal power plant under uncertain conditions, Energy Convers. Manag. 75(2013) 325-335. [44] Y. Li, R.L. Motard, Optimal pinch approach temperature in heat-exchanger networks, Ind. Eng. Chem. Fundam. 25(4) (1986) 577-581. [45] K. Suaysompol, R.M. Wood, Flexible pinch design method for heat exchanger networks. Part I. Heuristic guidelines for free hand designs, Chem. Eng. Res. Des. 69(6) (1991) 458-464. [46] K. Suaysompol, R.M. Wood, Flexible pinch design method for heat exchanger networks. Part Ⅱ FLEXNET. Heuristic searching guided by the A algorithm, Chem. Eng. Res. Des. 69(6) (1991) 465-470. [47] A. Osman, M.I.A. Mutalib, I. Shigidi, Heat recovery enhancement in HENs using a combinatorial approach of paths combination and process streams' temperature flexibility, S. Afr. J. Chem. Eng. 21(2016) 37-48. [48] L. Payet, R. Thery Hétreux, G. Hétreux, F. Bourgeois, P. Floquet, Flexibility assessment of heat exchanger networks:From a thorough data extraction to robustness evaluation, Chem. Eng. Res. Des. 131((2018) 571-583. [49] Y. Wang, M. Pan, I. Bulatov, R. Smith, J.K. Kim, Application of intensified heat transfer for the retrofit of heat exchanger network, Appl. Energy 89(1) (2012) 45-59. [50] N. Jiang, J.D. Shelley, S. Doyle, R. Smith, Heat exchanger network retrofit with a fixed network structure, Appl. Energy 127(2014) 25-33. [51] M.O. Akpomiemie, R. Smith, Retrofit of heat exchanger networks without topology modifications and additional heat transfer area, Appl. Energy 159(2015) 381-390. [52] D.F. Marselle, M. Morari, D.F. Rudd, Design of resilient processing plants-Ⅱ. Design and control of energy management systems, Chem. Eng. Sci. 37(2) (1982) 259-270. [53] M. Morari, Flexibility and resiliency of process systems, Comput. Chem. Eng. 7(4) (1983) 423-437. [54] A.K. Saboo, M. Morari, Design of resilient processing plants-IV:Some new results on heat exchanger network synthesis, Chem. Eng. Sci. 39(3) (1984) 579-592. [55] A.K. Saboo, M. Morari, D.C. Woodcock, Design of resilient processing plants-VⅢ. A resilience index for heat exchanger networks, Chem. Eng. Sci. 40(8) (1985) 1553-1565. [56] A.K. Saboo, M. Morari, R.D. Colberg, Resilience analysis of heat exchanger networks-I. Temperature dependent heat capacities, Comput. Chem. Eng. 11(4) (1987) 399-408. [57] A.K. Saboo, M. Morari, R.D. Colberg, Resilience analysis of heat exchanger networks-Ⅱ. Stream splits and flowrate variations, Comput. Chem. Eng. 11(5) (1987) 457-468. [58] R.D. Colberg, M. Morari, Analysis and synthesis of resilient heat exchanger networks, Adv. Chem. Eng. 14(1988) 1-93. [59] J. Cerdá, M.R. Galli, N. Camussi, M.A. Isla, Synthesis of flexible heat exchanger networks-I. Convex networks, Comput. Chem. Eng. 14(2) (1990) 197-211. [60] J. Cerdá, M.R. Galli, Synthesis of flexible heat exchanger networks-Ⅱ. Nonconvex networks with large temperature variations, Comput. Chem. Eng. 14(2) (1990) 213-225. [61] M.R. Galli, J. Cerdá, Synthesis of flexible heat exchanger networks-Ⅲ. Temperature and flowrate variations, Comput. Chem. Eng. 15(1) (1991) 7-24. [62] N. Aguilera, G. Nasini, Flexibility test for heat exchanger networks with uncertain flowrates, Comput. Chem. Eng. 19(9) (1995) 1007-1017. [63] N.E. Aguilera, G. Nasini, Flexibility test for heat exchanger networks with nonoverlapping inlet temperature variations, Comput. Chem. Eng. 20(10) (1996) 1227-1240. [64] K. Li, B. Niemeyer, Optimal operation of heat exchanger networks under uncertainty, Int. J. Heat Exch. 5(1) (2004) 79-94. [65] R.D. Colberg, M. Morari, D.W. Townsend, A resilience target for heat exchanger network synthesis, Comput. Chem. Eng. 13(7) (1989) 821-837. [66] A.E.S. Konukman, U. Akman, M.C. Camurdan, Optimal design of controllable heat-exchanger networks under multi-directional resiliency-target constraints, Comput. Chem. Eng. 19(Suppl. 1) (1995) 149-154. [67] A.E.S. Konukman, M.C. Camurdan, U. Akman, Simultaneous flexibility targeting and synthesis of minimum-utility heat-exchanger networks with superstructure-based MILP formulation, Chem. Eng. Process. Process Intensif. 41(6) (2002) 501-518. [68] P.P. Chen, J.L. Li, J. Fan, S.H. Hong, J. Du, Synthesis of flexible heat exchanger network with fouling growth, J. East China Univ. Sci. Technol. 39(1) (2013) 51-54. [69] I.E. Grossmann, R.W.H. Sargent, Optimum design of chemical plants with uncertain parameters, AIChE J. 24(6) (1978) 1021-1028. [70] K.P. Halemane, I.E. Grossmann, Optimal process design under uncertainty, AIChE J. 29(3) (1983) 425-433. [71] R.E. Swaney, I.E. Grossmann, An index for operational flexibility in chemical process design. Part I:Formulation and theory, AIChE J. 31(4) (1985) 621-630. [72] C.A. Floudas, I.E. Grossmann, Synthesis of flexible heat exchanger networks with uncertain flowrates and temperatures, Comput. Chem. Eng. 11(4) (1987) 319-336. [73] I.E. Grossmann, C.A. Floudas, Active constraint strategy for flexibility analysis in chemical processes, Comput. Chem. Eng. 11(6) (1987) 675-693. [74] E.N. Pistikopoulos, Uncertainty in process design and operations, Comput. Chem. Eng. 19((1995) 553-563. [75] R.E. Swaney, I.E. Grossmann, An index for operational flexibility in chemical process design. Part Ⅱ:Computational algorithms, AIChE J. 31(1985) 631-641. [76] Z.N. Pintarič, Z. Kravanja, Identification of critical points for the design and synthesis of flexible processes, Comput. Chem. Eng. 32(7) (2008) 1603-1624. [77] G.M. Ostrovsky, Y.M. Volin, E.I. Barit, M.M. Senyavin, Flexibility analysis and optimization of chemical plants with uncertain parameters, Comput. Chem. Eng. 18(8) (1994) 755-767. [78] G.M. Ostrovsky, L.E.K. Achenie, Y. Wang, Y.M. Volin, A new algorithm for computing process flexibility, Ind. Eng. Chem. Res. 39(7) (2000) 2368-2377. [79] C.A. Floudas, Z.H. Gümüs, Global optimization in design under uncertainty:feasibility test and flexibility index problems, Ind. Eng. Chem. Res. 40(20) (2001) 4267-4282. [80] G.M. Ostrovsky, I.V. Datskov, L.E.K. Achenie, Yu.M. Volin, Process uncertainty:Case of insufficient process data at the operation stage, AIChE J. 49(5) (2004) 1216-1232. [81] J. Moon, K. Kulkarni, L. Zhang, A.A. Linninger, Parallel hybrid algorithm for process flexibility analysis, Ind. Eng. Chem. Res. 47(21) (2008) 8324-8336. [82] J. Li, J. Du, Z. Zhao, P. Yao, Efficient method for flexibility analysis of largescale nonconvex heat exchanger networks, Ind. Eng. Chem. Res. 54(43) (2015) 10757-10767. [83] J. Acevedo, E.N. Pistikopoulos, A parametric MINLP algorithm for process synthesis problems under uncertainty, Ind. Eng. Chem. Res. 35(1) (1996) 147-158. [84] H. Jiang, B. Chen, I.E. Grossmann, New algorithm for the flexibility index problem of quadratic systems, AIChE J. 64(7) (2018) 2486-2499. [85] E.N. Pistikopoulos, T.A. Mazzuchi, A novel flexibility analysis approach for processes with stochastic parameters, Comput. Chem. Eng. 14(9) (1990) 991-1000. [86] L. Tantimuratha, G. Asteris, D.K. Antonopoulos, A.C. Kokossis, A conceptual programming approach for the design of flexible hens, Comput. Chem. Eng. 25(4-6) (2001) 887-892. [87] V. Briones, A.C. Kokossis, Hypertargets:a conceptual programming approach for the optimisation of industrial heat exchanger networks-I. Grassroots design and network complexity, Chem. Eng. Sci. 54(4) (1999) 519-539. [88] V. Briones, A.C. Kokossis, Hypertargets:A conceptual programming approach for the optimisation of industrial heat exchanger networks-Ⅱ. Retrofit design, Chem. Eng. Sci. 54(4) (1999) 541-561. [89] V. Briones, A.C. Kokossis, Hypertargets:A conceptual programming approach for the optimisation of industrial heat exchanger networks-Part Ⅲ. Industrial applications, Chem. Eng. Sci. 54(5) (1999) 685-706. [90] L. Tantimuratha, A.C. Kokossis, Flexible energy management and heat exchanger network design, Ann. Oper. Res. 132(1-4) (2004) 277-300. [91] Y.L. Tan, D.K.S. Ng, M.M. El-Halwagi, D.C.Y. Foo, Y. Samyudia, Floating pinch method for utility targeting in heat exchanger network (HEN), Chem. Eng. Res. Des. 92(1) (2014) 119-126. [92] Y.L. Tan, D.K.S. Ng, D.C.Y. Foo, M.M. El-Halwagi, Y. Samyudia, Heat integrated resource conservation networks without mixing prior to heat exchanger networks, J. Clean. Prod. 71(2014) 128-138. [93] C.L. Chen, P.S. Hung, Multicriteria synthesis of flexible heat-exchanger networks with uncertain source-stream temperatures, Chem. Eng. Process. Process Intensif. 44(1) (2005) 89-100. [94] E.N. Pistikopoulos, I.E. Grossmann, Optimal retrofit design for improving process flexibility in nonlinear systems-I. Fixed degree of flexibility, Comput. Chem. Eng. 13(9) (1989) 1003-1016. [95] Z.N. Pintarič, Z. Kravanja, A methodology for the synthesis of heat exchanger networks having large numbers of uncertain parameters, Energy 92(2015) 373-382. [96] Y. Bai, L. Liu, S. Gu, J. Du, Synthesis of flexible heat exchanger networks considering fouling resistance, Chem. Eng. Trans. 61(2017) 511-516. [97] X.L. Zhang, H.C. Yin, Z.Y. Huo, Flexible synthesis of heat exchanger network with particle swarm optimization algorithm, Adv. Mater. Res. 214(2011) 569-572. [98] J. Li, J. Du, Z. Zhao, P. Yao, Structure and area optimization of flexible heat exchanger networks, Ind. Eng. Chem. Res. 53(29) (2014) 11779-11793. [99] H. Nishitani, Y. Kutsuwa, K. Shimizu, E. Kunugita, Design of heat exchanger network with uncertainty in overall heat transfer coefficients, J. Chem. Eng. Jpn 21(4) (1988) 375-381. [100] H. Nishitani, K. Shimizu, E. Kunugita, Optimal design of heat exchanger network with a large number of uncertain parameters, Electr. Eng. Jpn. 109(3) (1989) 118-129. [101] Z.N.Pintarič,Z.Kravanja,Thetwo-levelstrategyforMINLPsynthesisofprocess flowsheets under uncertainty, Comput. Chem. Eng. 24(2) (2000) 195-201. [102] W.C. Rooney, L.T. Biegler, Incorporating joint confidence regions into design under uncertainty, Comput. Chem. Eng. 23(10) (1999) 1563-1575. [103] K. Zheng, H.H. Lou, J. Wang, F. Cheng, A method for flexible heat exchanger network design under severe operation uncertainty, Chem. Eng. Technol. 36(5) (2013) 757-765. [104] E.N. Pistikopoulos, M.G. Ierapetritou, Novel approach for optimal process design under uncertainty, Comput. Chem. Eng. 19(10) (1995) 1089-1110. [105] Z.N. Pintarič, Z. Kravanja, A strategy for MINLP synthesis of flexible and operable processes, Comput. Chem. Eng. 28(6-7) (2004) 1105-1119. [106] Z.N. Pintarič, Z. Kravanja, Identification of vertex and nonvertex critical points for large-scale approximate stochastic optimization, Comput. Aided Chem. Eng. 20(2005) 91-96. [107] Z.N. Pintarič, M. Kasaš, Z. Kravanja, Sensitivity analyses for scenario reduction in flexible flow sheet design with a large number of uncertain parameters, AIChE J. 59(8) (2013) 2862-2871. [108] L.V. Pavão, C. Pozo, C.B.B. Costa, M.A.S.S. Ravagnani, L. Jiménez, Financial risks management of heat exchanger networks under uncertain utility costs via multi-objective optimization, Energy 139(2017) 98-117. [109] L.V.Pavão,C.Pozo-Fernandez,L.Jiménez,M.A.S.S.Ravagnani,C.B.B.Costa,Financial riskmanagementinheatexchangernetworksconsideringmultipleutility sources with uncertain costs, Ind. Eng. Chem. Res. 57(30) (2018) 9831-9848. [110] C.A. Floudas, I.E. Grossmann, Synthesis of flexible heat exchanger networks for multiperiod operation, Comput. Chem. Eng. 10(2) (1986) 153-168. [111] C.A. Floudas, I.E. Grossmann, Automatic generation of multiperiod heat exchanger network configurations, Comput. Chem. Eng. 11(2) (1987) 123-142. [112] I.B. Lee, Toward the synthesis of global optimum heat exchanger networks under multiple-periods of operation, Korean J. Chem. Eng. 8(2) (1991) 95-104. [113] M. Bagajewicz, J. Soto, Rigorous procedure for the design of conventional atmospheric crude fractionation units. Part Ⅱ:Heat exchanger network, Ind. Eng. Chem. Res. 40(2) (2001) 627-634. [114] S. Ji, M. Bagajewiez, Design of crude distillation plants with vacuum units. Ⅱ. Heat exchanger network design, Ind. Eng. Chem. Res. 41(24) (2002) 6100-6106. [115] A. Mian, E. Martelli, F. Maréchal, Framework for the multiperiod sequential synthesis of heat exchanger networks with selection, design, and scheduling of multiple utilities, Ind. Eng. Chem. Res. 55(1) (2016) 168-186. [116] C.B. Miranda, C.B.B. Costa, J.A. Caballero, M.A.S.S. Ravagnani, Optimal synthesis of multiperiod heat exchanger networks:A sequential approach, Appl. Therm. Eng. 115(2017) 1187-1202. [117] L. Čuček, Z. Kravanja, Retrofitting of large-scale heat exchanger networks within total sites under uncertainty by considering trade-offs between investment and operating cost, Chem. Eng. Trans. 45(2015) 1723-1728. [118] L. Čuček, Z. Kravanja, A procedure for the retrofitting of large-scale heat exchanger networks for fixed and flexible designs, Chem. Eng. Trans. 45(2015) 31-36. [119] K.P. Papalexandri, E.N. Pistikopoulos, A multiperiod minlp model for improving the flexibility of heat exchanger networks, Comput. Chem. Eng. 17(1993) S111-S116. [120] K.P. Papalexandri, E.N. Pistikopoulos, An MINLP retrofit approach for improving the flexibility of heat exchanger networks, Ann. Oper. Res. 42(1) (1993) 119-168. [121] K.P. Papalexandri, E.N. Pistikopoulos, A multiperiod MINLP model for the synthesis of flexible heat and mass exchange networks, Comput. Chem. Eng. 18(11-12) (1994) 1125-1139. [122] J. Aaltola, Simultaneous synthesis of flexible heat exchanger network, Appl. Therm. Eng. 22(8) (2002) 907-918. [123] C.L. Chen, P.S. Hung, Simultaneous synthesis of flexible heat-exchange networks with uncertain source-stream temperatures and flowrates, Ind. Eng. Chem. Res. 43(18) (2004) 5916-5928. [124] W. Verheyen, N. Zhang, Design of flexible heat exchanger network for multiperiod operation, Chem. Eng. Sci. 61(23) (2006) 7730-7753. [125] A. Nemet, J.J. Klemeš, Z. Kravanja, Minimisation of a heat exchanger networks' cost over its lifetime, Energy 45(1) (2012) 264-276. [126] A. Nemet, J.J. Klemeš, Z. Kravanja, Optimising entire lifetime economy of heat exchanger networks, Energy 57(2013) 222-235. [127] A. Nemet, J.J. Klemeš, Z. Kravanja, Heat exchanger network synthesis considering risk assessment for entire network lifetime, Chem. Eng. Trans. 57(2017) 307-312. [128] K.P. Papalexandri, E.N. Pistikopoulos, B. Kalitventzeff, Modelling and optimization aspects in energy management and plant operation with variable energy demands-application to industrial problems, Comput. Chem. Eng. 22(9) (1998) 1319-1333. [129] N.Z. Pintaric, Z. Kravanja, Multiperiod investment models for the gradual reconstruction of chemical processes, Chem. Eng. Technol. 30(12) (2007) 1622-1632. [130] J. Ma, X. Chen, C. Chang, Y. Wang, X. Feng, Simultaneous synthesis of multiperiod heat exchanger networks for multi-plant heat integration, Chem. Eng. Trans. 61(2017) 757-762. [131] J.A. Francesconi, D.G. Oliva, P.A. Aguirre, Flexible heat exchanger network design of an ethanol processor for hydrogen production. A model-based multi-objective optimization approach, Int. J. Hydrog. Energy 42(5) (2017) 2736-2747. [132] X. Ma, P. Yao, X. Luo, W. Roetzel, Synthesis of multi-stream heat exchanger network for multi-period operation with genetic/simulated annealing algorithms, Appl. Therm. Eng. 28(8-9) (2008) 809-823. [133] M. Short, A.J. Isafiade, D.M. Fraser, Z. Kravanja, Two-step hybrid approach for the synthesis of multi-period heat exchanger networks with detailed exchanger design, Appl. Therm. Eng. 105(2016) 807-821. [134] J. Timmerman, M. Hennen, A. Bardow, P. Lodewijks, L. Vandevelde, G. Van Eetvelde, Towards low carbon business park energy systems:A holistic techno-economic optimisation model, Energy 125(2017) 747-770. [135] A.J. Isafiade, M. Short, M. Bogataj, Z. Kravanja, Integrating renewables into multi-period heat exchanger network synthesis considering economics and environmental impact, Comput. Chem. Eng. 99(2017) 51-65. [136] S.M. Lai, H. Wu, C.W. Hui, B. Hua, G. Zhang, Flexible heat exchanger network design for low-temperature heat utilization in oil refinery, Asia Pac. J. Chem. Eng. 6(5) (2011) 713-733. [137] F. Friedler, P. Varbanov, J. Klemeš, Advanced HENs design for multi-period operation using P-graph, Chem. Eng. Trans. 18(2009) 457-462. [138] M. Escobar, J.O. Trierweiler, I.E. Grossmann, A heuristic Lagrangean approach for the synthesis of multiperiod heat exchanger networks, Appl. Therm. Eng. 63(1) (2014) 177-191. [139] D.K. Varvarezos, L.T. Biegler, I.E. Grossmann, Multiperiod design optimization with SQP decomposition, Comput. Chem. Eng. 18(7) (1994) 579-595. [140] B.J. Zhang, Q.L. Chen, S. Hu, W.G. Gu, C.W. Hui, Simultaneous optimization of energy and materials based on heat exchanger network simulation for diesel hydrotreating units, Chem. Eng. Res. Des. 88(5-6) (2010) 513-519. [141] M.I. Ahmad, N. Zhang, M. Jobson, L. Chen, Multi-period design of heat exchanger networks, Chem. Eng. Res. Des. 90(11) (2012) 1883-1895. [142] G.P. Silva, C.B. Miranda, E.P. Carvalho, M.A.S.S. Ravagnani, A simultaneous approach for the synthesis of multiperiod heat exchanger network using particle swarm optimization, Can. J. Chem. Eng. 96(5) (2018) 1142-1155. [143] C.M. Oliveira, L.V. Pavão, M.A.S.S. Ravagnani, A.J.G. Cruz, C.B.B. Costa, Process integration of a multiperiod sugarcane biorefinery, Appl. Energy 213(2018) 520-539. [144] L.V. Pavão, C.B. Miranda, C.B.B. Costa, M.A.S.S. Ravagnani, Efficient multiperiod heat exchanger network synthesis using a meta-heuristic approach, Energy 142(2018) 356-372. [145] A.J. Isafiade, D.M. Fraser, Interval based MINLP superstructure synthesis of heat exchanger networks for multi-period operations, Chem. Eng. Res. Des. 88(10) (2010) 1329-1341. [146] L. Kang, Y. Liu, J. Hou, Synthesis of multi-period heat exchanger network considering characteristics of sub-periods, Chem. Eng. Trans. 45(2015) 49-54. [147] A.J. Isafiade, M. Short, Simultaneous synthesis of flexible heat exchanger networks for unequal multi-period operations, Process. Saf. Environ. Prot. 103((2016) 377-390. [148] L. Kang, Y. Liu, L. Wu, Synthesis of multi-period heat exchanger networks based on features of sub-period durations, Energy 116(2016) 1302-1311. [149] A.J. Isafiade, M. Bogataj, D. Fraser, Z. Kravanja, Optimal synthesis of heat exchanger networks for multi-period operations involving single and multiple utilities, Chem. Eng. Sci. 127(2015) 175-188. [150] E. Sadeli, C.T. Chang, Heuristic approach to incorporate timesharing schemes in multiperiod heat exchanger network designs, Ind. Eng. Chem. Res. 51(23) (2012) 7967-7987. [151] D. Jiang, C.T. Chang, A new approach to generate flexible multiperiod heat exchanger network designs with timesharing mechanisms, Ind. Eng. Chem. Res. 52(10) (2013) 3794-3804. [152] D. Jiang, C.T. Chang, An algorithmic approach togenerate timesharing schemes for multi-period HEN designs, Chem. Eng. Res. Des. 93(2015) 402-410. [153] C.B. Miranda, C.B.B. Costa, J.A. Caballero, M.A.S.S. Ravagnani, Heat exchanger network optimization for multiple period operations, Ind. Eng. Chem. Res. 55(39) (2016) 10301-10315. [154] L.V. Pavão, C.B. Miranda, C.B.B. Costa, M.A.S.S. Ravagnani, Synthesis of multiperiod heat exchanger networks with timesharing mechanisms using meta-heuristics, Appl. Therm. Eng. 128(2018) 637-652. [155] L. Kang, Y. Liu, Retrofit of heat exchanger networks for multiperiod operations by matching heat transfer areas in reverse order, Ind. Eng. Chem. Res. 53(12) (2014) 4792-4804. [156] L. Kang, Y. Liu, Target-oriented methodology on matching heat transfer areas for a multiperiod heat exchanger network retrofit, Ind. Eng. Chem. Res. 53(45) (2014) 17753-17769. [157] L. Kang, Y. Liu, Minimizing investment cost for multi-period heat exchanger network retrofit by matching heat transfer areas with different strategies, Chin. J. Chem. Eng. 23(7) (2015) 1153-1160. [158] L. Kang, Y. Liu, A systematic strategy for multi-period heat exchanger network retrofit under multiple practical restrictions, Chin. J. Chem. Eng. 25(8) (2017) 1043-1051. [159] D. Zhang, P. Wang, G. Liu, A novel sensitivity analysis method for the energy consumption of coupled reactor and heat exchanger network system, Energy Fuels 32(6) (2018) 7210-7219. [160] B.J. Zhang, X.L. Luo, K. Liu, Q.L. Chen, W. Li, Simultaneous target of HEN and columns with variable feed temperatures for a toluene disproportionation plant, Ind. Eng. Chem. Res. 53(25) (2014) 10429-10438. [161] D.Zhang,G.Liu,Integrationofheatexchangernetworkconsideringthepressure variation of distillation column, Appl. Therm. Eng. 116(2017) 777-783. [162] V.S.K. Adi, C.T. Chang, A mathematical programming formulation for temporal flexibility analysis, Comput. Chem. Eng. 57(2013) 151-158. [163] V.D. Dimitriadis, E.N. Pistikopoulos, Flexibility analysis of dynamic systems, Ind. Eng. Chem. Res. 34(1995) 4451-4462. [164] S. Gu, L. Liu, Y. Bai, J. Zhang, J. Du, Heat exchanger networks synthesis considering dynamic flexibility, Chem. Eng. Trans. 61(2017) 199-204. [165] L. Kang, Y. Liu, Design of flexible multiperiod heat exchanger networks with debottlenecking in subperiods, Chem. Eng. Sci. 185(2018) 116-126. [166] S. Bungener, R. Hackl, G. Van Eetvelde, S. Harvey, F. Marechal, Multi-period analysis of heat integration measures in industrial clusters, Energy 93(1) (2015) 220-234. [167] R.M. Apap, I.E. Grossmann, Models and computational strategies for multistage stochastic programming under endogenous and exogenous uncertainties, Comput. Chem. Eng. 103(2017) 233-274. |
[1] | Siwen Gu, Lei Zhang, Yu Zhuang, Weida Li, Jian Du, Cheng Shao. Two-tier control structure design methodology applied to heat exchanger networks [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 231-244. |
[2] | Wenhui Yang, Haoyu Yin, Zhihong Yuan, Bingzhen Chen. Flexibility analysis for continuous ibuprofen manufacturing processes [J]. Chinese Journal of Chemical Engineering, 2022, 51(11): 115-125. |
[3] | Wende Tian, Haoran Zhang, Zhe Cui, Xiude Hu. Mechanism analysis and simulation of methyl methacrylate production coupled chemical looping gasification system [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 184-196. |
[4] | Yu Zhuang, Rui Yang, Lei Zhang, Jian Du, Shengqiang Shen. Simultaneous synthesis of sub and above-ambient heat exchanger networks including expansion process based on an enhanced superstructure model [J]. Chinese Journal of Chemical Engineering, 2020, 28(5): 1344-1356. |
[5] | Siwen Gu, Linlin Liu, Lei Zhang, Yiyuan Bai, Shaojing Wang, Jian Du. Heat exchanger network synthesis integrated with flexibility and controllability [J]. Chinese Journal of Chemical Engineering, 2019, 27(7): 1474-1484. |
[6] | Lijing Zang, Kejin Huang, Ting Guo, Yang Yuan, Haisheng Chen, Liang Zhang, Xing Qian, Shaofeng Wang. Temperature inferential control of a reactive distillation column with double reactive sections [J]. Chinese Journal of Chemical Engineering, 2019, 27(4): 896-904. |
[7] | Abbas Hemmati, Hamed Rashidi. Mass transfer investigation and operational sensitivity analysis of aminebased industrial CO2 capture plant [J]. Chin.J.Chem.Eng., 2019, 27(3): 534-543. |
[8] | Li Xia, Yuanli Feng, Xiaoyan Sun, Shuguang Xiang. Design of heat exchanger network based on entransy theory [J]. Chin.J.Chem.Eng., 2018, 26(8): 1692-1699. |
[9] | Qi Chen, Jintao Sun, Xiaojun Zhang. Kinetic contribution of CO2/O2 additive in methane conversion activated by non-equilibrium plasmas [J]. Chin.J.Chem.Eng., 2018, 26(5): 1041-1050. |
[10] | Lixia Kang, Yongzhong Liu. A systematic strategy for multi-period heat exchanger network retrofit under multiple practical restrictions [J]. , 2017, 25(8): 1043-1051. |
[11] | Jianqiang Deng, Zheng Cao, Dongbo Zhang, Xiao Feng. Integration of energy recovery network including recycling residual pressure energy with pinch technology [J]. , 2017, 25(4): 453-462. |
[12] | Lixia Kang, Yongzhong Liu. Minimizing investment cost for multi-period heat exchanger network retrofit by matching heat transfer areas with different strategies [J]. Chin.J.Chem.Eng., 2015, 23(7): 1153-1160. |
[13] | Lianfang Cai, Xuemin Tian . A new process monitoring method based on noisy time structure independent component analysis [J]. Chin.J.Chem.Eng., 2015, 23(1): 162-172. |
[14] | LUO Yiqing, FENG Shengke, SUN Changjiang, YUAN Xigang . A Two-step Design Method for Shaft Work Targeting on Low-temperature Process [J]. Chin.J.Chem.Eng., 2014, 22(6): 664-668. |
[15] | YI Dake, HAN Zhizhong, WANG Kefeng, YAO Pingjing . Strategy for Synthesis of Flexible Heat Exchanger Networks Embedded with System Reliability Analysis [J]. Chin.J.Chem.Eng., 2013, 21(7): 742-753. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||