[1] J.G. Calvert, The chemistry of the atmosphere and its perturbations through human activities, Pure Appl. Chem. 69(1997) 1-12. [2] F. Winter, C. Wartha, H. Hofbauer, NO and N2O formation during the combustion of wood, straw, malt waste and peat, Bioresour. Technol. 70(1999) 39-49. [3] G.W. Xu, C.B. Yao, L. Dong, Spirits lees utilization via circulating fluidized bed decoupling combustion, in:BIT's 3rd World Congress of Industrial Biotechnology, Dalian, China, 2010. [4] C. Yao, L. Dong, Y. Wang, J. Yu, Q. Li, G. Xu, S. Gao, B. Yi, J. Yang, Fluidized bed pyrolysis of distilled spirits lees for adapting to its circulating fluidized bed decoupling combustion, Fuel Process. Technol. 92(2011) 2312-2319. [5] Z. Han, X. Zeng, C. Yao, Y. Wang, G. Xu, Comparison of direct combustion in a circulating fluidized bed system and decoupling combustion in a dual fluidized bed system for distilled spirit lees, Energy Fuel 30(2015) 1693-1700. [6] M.L. Meadows, B.P. Kuo, A. Roberts, S.M. Puski, Summary Report:Control of NOx Emissions by Reburning, U.S.E.P.A. Center for Environmental Research Information, United States, 1996. [7] Y. Song, Y. Wang, W. Yang, C. Yao, G. Xu, Reduction of NO over biomass tar in micro-fluidized bed, Fuel Process. Technol. 118(2014) 270-277. [8] H.-S. Do, Y. Bunman, S. Gao, G. Xu, Reduction of NO by biomass pyrolysis products in an experimental drop-tube, Energy Fuel 31(2017) 4499-4506. [9] Y. Bunman, H.-S. Do, X. Zeng, Z. Han, S. Gao, G. Xu, NO reduction by different tar agents and model compounds in a drop-tube reactor, Fuel Process. Technol. 172(2018) 187-194. [10] Z.L. Fan, J. Zhang, C.D. Sheng, X.F. Lin, Y.C. Xu, Experimental study of NO reduction through reburning of biogas, Energy Fuel 20(2006) 579-582. [11] P. Glarborg, P.G. Kristensen, K. Dam-Johansen, M.U. Alzueta, A. Millera, R. Bilbao, Nitric oxide reduction by non-hydrocarbon fuels. Implications for reburning with gasification gases, Energy Fuel 14(2000) 828-838. [12] X.Y. Wu, Q. Song, H.B. Zhao, Q. Yao, Synergetic effect of biomass volatiles on NO reduction and the influence of K/Na on it, Fuel 158(2015) 634-640. [13] H. Zhang, R. Xiao, D. Wang, G. He, S. Shao, J. Zhang, Z. Zhong, Biomass fast pyrolysis in a fluidized bed reactor under N2, CO2, CO, CH4 and H2 atmospheres, Bioresour. Technol. 102(2011) 4258-4264. [14] J. Duan, Y.-H. Luo, N.-Q. Yan, Y. Chen, Effect of biomass gasification tar on NO reduction by biogas reburning, Energy Fuel 21(2007) 1511-1516. [15] C.Y. Liu, Y.H. Luo, J. Duan, R.Z. Zhang, L.Y. Hu, Y. Chen, Experimental study on the effect of NO reduction by tar model compounds, Energy Fuel 23(2009) 4099-4104. [16] R.Z. Zhang, C.Y. Liu, R.H. Yin, J. Duan, Y.H. Luo, Experimental and kinetic study of the NO-reduction by tar formed from biomass gasification, using benzene as a tar model component, Fuel Process. Technol. 92(2011) 132-138. [17] R.Z. Zhang, R.H. Yin, Y.H. Luo, Characteristics of NO-reduction by tar-included syngas from an updraft gasifier, Environ. Prog. 33(2014) 602-608. [18] L. Dong, S. Gao, G. Xu, NO reduction over biomass char in the combustion process, Energy Fuel 24(2010) 446-450. [19] L. Dong, S. Gao, W. Song, G. Xu, Experimental study of NO reduction over biomass char, Fuel Process. Technol. 88(2007) 707-715. [20] B.J. Zhong, W.W. Shi, W.B. Fu, Effects of fuel characteristics on the NO reduction during the reburning with coals, Fuel Process. Technol. 79(2002) 93-106. [21] P. Lu, Y. Wang, Z. Huang, F. Lu, Y. Liu, Study on NO reduction and its heterogeneous mechanism through biomass reburning in an entrained flow reactor, Energy Fuel 25(2011) 2956-2962. [22] Y. Shu, H. Wang, J. Zhu, G. Tian, J. Huang, F. Zhang, An experimental study of heterogeneous NO reduction by biomass reburning, Fuel Process. Technol. 132(2015) 111-117. [23] P. Lu, S.R. Xu, X.M. Zhu, Study on NO heterogeneous reduction with coal in an entrained flow reactor, Fuel 88(2009) 110-115. [24] J. Luan, R. Sun, S. Wu, J. Lu, N. Yao, Experimental studies on reburning of biomasses for reducing NOx in a drop tube furnace, Energy Fuel 23(2009) 1412-1421. [25] S. Su, J. Xiang, S. Hu, L.S. Sun, Process evaluation and detailed characterization of biomass reburning in a single-burner furnace, Energy Fuel 26(2012) 302-312. [26] R. Bilbao, M.U. Alzueta, A. Millera, L. Prada, Dilution and stoichiometry effects on gas reburning:an experimental study, Ind. Eng. Chem. Res. 36(1997) 2440-2444. [27] J. Shen, J.X. Liu, J.F. Ma, H. Zhang, X.M. Jiang, Parametric study of reburning of nitrogen oxide for superfine pulverized coal, Energy Convers. Manag. 89(2015) 825-832. [28] C.Y. Liu, C.S. Zhang, R.H. Yin, A study on NO reduction by biomass tar-using phenol as a model compound of tar from updraft biomass gasification, Environ. Prog. 34(2015) 47-53. [29] M.P. Ruiz, R. Guzmán De Villoria, Á. Millera, M.U. Alzueta, R. Bilbao, Influence of different operation conditions on soot formation from C2H2 pyrolysis, Ind. Eng. Chem. Res. 46(2007) 7550-7560. [30] M.S. Akhter, A.R. Chughtai, D.M. Smith, The structure of hexane soot I:spectroscopic studies, Appl. Spectrosc. 39(1985) 143-153. [31] T. Mendiara, U. Alzueta Maria, A. Millera, R. Bilbao, A comparison of acetylene soot and two different carbon blacks:Reactivity to oxygen and NO, Int. J. Chem. React. Eng. 5(2007). [32] T. Mendiara, M.U. Alzueta, A. Millera, R. Bilbao, Acetylene soot reaction with NO in the presence of CO, J. Hazard. Mater. 166(2009) 1389-1394. [33] B.J. Zhong, H. Tang, Catalytic NO reduction at high temperature by de-ashed chars with catalysts, Combust. Flame 149(2007) 234-243. [34] D. Allen, A.N. Hayhurst, The chemical reactions of nitric oxide with solid carbon and catalytically with gaseous carbon monoxide, Fuel 142(2015) 260-267. [35] S. Septien, S. Valin, C. Dupont, M. Peyrot, S. Salvador, Effect of particle size and temperature on woody biomass fast pyrolysis at high temperature (1000-1400 C), Fuel 97(2012) 202-210. [36] X. Huang, D. Kocaefe, Y. Lu, D. Bhattacharyay, Y. Kocaefe, P. Coulombe, Investigation on the structure of carbonized pitch and calcined cokecarbonized pitch interface in carbon anodes by etching, J. Mater. Res. 31(2016) 3513-3521. [37] D. Hays, J.W. Patrick, A. Walker, SEM characterization of cokes and carbons, Fuel 62(1983) 1079-1083. [38] W.Y. Chen, L. Ma, Effect of heterogeneous mechanisms during reburning of nitrogen oxide, AIChE J. 42(1996) 1968-1976. [39] I. Aarna, E.M. Suuberg, A review of the kinetics of the nitric oxide-carbon reaction, Fuel 76(1997) 475-491. [40] H. Zhuang, Y. Niu, Y. Gong, Y. Zhang, Y. Zhang, S. Hui, Influence of biomass reburning on NOx reductions during pulverized coal combustion, Energy Fuel 31(2017) 5597-5602. [41] Y. Shu, F. Zhang, H. Wang, J. Zhu, G. Tian, C. Zhang, Y. Cui, J. Huang, An experimental study of NO reduction by biomass reburning and the characterization of its pyrolysis gases, Fuel 139(2015) 321-327. [42] P. Morf, P. Hasler, T. Nussbaumer, Mechanisms and kinetics of homogeneous secondary reactions of tar from continuous pyrolysis of wood chips, Fuel 81(2002) 843-853. [43] P. Gilbert, C. Ryu, V. Sharifi, J. Swithenbank, Tar reduction in pyrolysis vapours from biomass over a hot char bed, Bioresour. Technol. 100(2009) 6045-6051. [44] M.U. Alzueta, P. Glarborg, K. Dam-Johansen, Low temperature interactions between hydrocarbons and nitric oxide:An experimental study, Combust. Flame 109(1997) 25-36. [45] H. Liu, E. Hampartsoumian, B.M. Gibbs, Evaluation of the optimal fuel characteristics for efficient NO reduction by coal reburning, Fuel 76(1997) 985-993. [46] J. Wang, Z. Huang, C. Tang, H. Miao, X. Wang, Numerical study of the effect of hydrogen addition on methane-air mixtures combustion, Int. J. Hydrogen Energy 34(2009) 1084-1096. |