Chinese Journal of Chemical Engineering ›› 2019, Vol. 27 ›› Issue (9): 1998-2013.DOI: 10.1016/j.cjche.2018.12.002
Previous Articles Next Articles
Chungang Xu, Xiaosen Li, Kefeng Yan, Xuke Ruan, Zhaoyang Chen, Zhiming Xia
Received:
2018-09-20
Revised:
2018-11-22
Online:
2019-12-04
Published:
2019-09-28
Contact:
Xiaosen Li
Supported by:
Chungang Xu, Xiaosen Li, Kefeng Yan, Xuke Ruan, Zhaoyang Chen, Zhiming Xia
通讯作者:
Xiaosen Li
基金资助:
Chungang Xu, Xiaosen Li, Kefeng Yan, Xuke Ruan, Zhaoyang Chen, Zhiming Xia. Research progress in hydrate-based technologies and processes in China: A review[J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 1998-2013.
Chungang Xu, Xiaosen Li, Kefeng Yan, Xuke Ruan, Zhaoyang Chen, Zhiming Xia. Research progress in hydrate-based technologies and processes in China: A review[J]. 中国化学工程学报, 2019, 27(9): 1998-2013.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2018.12.002
[1] Z.W. Ma, P. Zhang, H.S. Bao, S. Deng, Review of fundamental properties of CO2 hydrates and CO2 capture and separation using hydration method, Renew. Sust. Energ. Rev. 53(2016) 1273-1302. [2] C.G. Xu, J. Cai, Y.S. Yu, K.F. Yan, X.S. Li, Effect of pressure on methane recovery from natural gas hydrates by methane-carbon dioxide replacement, Appl. Energy 217(2018) 527-536. [3] D. Sloan, C.A. Koh, Clathrate Hydrates of Natural Gases-Third Edition, CRC Press, 2007. [4] P. Englezos, N. Kalogerakis, P.R. Bishnoi, Formation and decomposition of gas hydrates of natural-gas components, J. Inclus. Phenom. Mol. 8(1-2) (1990) 89-101. [5] E.D. Sloan, Clathrate hydrate measurements:microscopic, mesoscopic, and macroscopic, J. Chem. Thermodyn. 35(1) (2003) 41-53. [6] X.S. Li, C.G. Xu, Z.Y. Chen, H.J. Wu, Tetra-n-butyl ammonium bromide semiclathrate hydrate process for post-combustion capture of carbon dioxide in the presence of dodecyl trimethyl ammonium chloride, Energy 35(9) (2010) 3902-3908. [7] X.S. Li, C.G. Xu, Z.Y. Chen, H.J. Wu, Hydrate-based pre-combustion carbon dioxide capture process in the system with tetra-n-butyl ammonium bromide solution in the presence of cyclopentane, Energy 36(3) (2011) 1394-1403. [8] E.D. Sloan, Clathrate hydrates:The other common solid water phase, Ind. Eng. Chem. Res. 39(9) (2000) 3123-3129. [9] Y.N. Lv, S.S. Wang, C.Y. Sun, J. Gong, G.J. Chen, Desalination by forming hydrate from brine in cyclopentane dispersion system, Desalination 413(2017) 217-222. [10] R. Rautenbach, P. Pennings, Development and optimization of a hydrate process for desalination of seawater, Chem. Ing. Tech. 45(5) (1973) 259-264. [11] H. Kubota, K. Shimizu, Y. Tanaka, T. Makita, Thermodynamic properties of R13(Ccif3), R23(Chf3), R152a (C2h4f2), and propane hydrates for desalination of sea-water, J. Chem. Eng. Jpn 17(4) (1984) 423-429. [12] A.G.I. Dalvi, M.N.K. Mohammad, S. Al-Sulami, K. Sahul, R. Al-Rasheed, Effect of various forms of iron in recycle brine on performance of scale control additives in MSF desalination plants, Desalination 123(2-3) (1999) 177-184. [13] R. Rogers, G. Zhang, J. Dearman, C. Woods, Investigations into surfactant/gas hydrate relationship, J. Pet. Sci. Eng. 56(1-3) (2007) 82-88. [14] C.F. Song, Q.L. Liu, N. Ji, S. Deng, J. Zhao, Y. Li, Y.J. Song, H.L. Li, Alternative pathways for efficient CO2 capture by hybrid processes-A review, Renew. Sust. Energ. Rev. 82(2018) 215-231. [15] J.S. Zhang, P. Yedlapalli, J.W. Lee, Thermodynamic analysis of hydrate-based precombustion capture of CO2, Chem. Eng. Sci. 64(22) (2009) 4732-4736. [16] K.F. Yan, X.S. Li, Z.Y. Chen, C.G. Xu, Molecular dynamics simulation of CO2 separation from integrated gasification combined cycle syngas via the hydrate formation, Acta Phys. Sin. Chin. Ed. 59(6) (2010) 4313-4321. [17] D.L. Yang, L.A.A. Le, R.J. Martinez, R.P. Currier, D.F. Spencer, Kinetics of CO2 hydrate formation in a continuous flow reactor, Chem. Eng. J. 172(1) (2011) 144-157. [18] C.G. Xu, X.S. Li, Q.N. Lv, Z.Y. Chen, J. Cai, Hydrate-based CO2(carbon dioxide) capture from IGCC (integrated gasification combined cycle) synthesis gas using bubble method with a set of visual equipment, Energy 44(1) (2012) 358-366. [19] Y.C. Song, X.J. Wan, M.J. Yang, L.L. Jiang, Y. Liu, B.L. Dou, J.F. Zhao, S.R. Wang, Study of selected factors affecting hydrate-based carbon dioxide separation from simulated fuel gas in porous media, Energy Fuel 27(6) (2013) 3341-3348. [20] H. Liu, J. Wang, G.J. Chen, B. Liu, A. Dandekar, B. Wang, X.X. Zhang, C.Y. Sun, Q.L. Ma, High-efficiency separation of a CO2/H-2 mixture via hydrate formation in W/O emulsions in the presence of cyclopentane and TBAB, Int. J. Hydrog. Energy 39(15) (2014) 7910-7918. [21] Y. Luo, X.Q. Guo, Intensification of capture CO2 from IGCC flue gas by hydrate formation under direct heat removal by phase change of n-tetradecane, Abstr. Pap. Am. Chem. Soc. 251(2016). [22] C.S. Zhang, S.S. Fan, D.Q. Liang, K.H. Guo, Effect of additives on formation of natural gas hydrate, Fuel 83(16) (2004) 2115-2121. [23] B.F. Shu, X.L. Ma, K.H. Guo, J.H. Li, Influences of different types of magnetic fields on HCFC-141b gas hydrate formation processes, Sci. China Ser. B 47(5)(2004) 428-433. [24] Y.T. Seo, H. Lee, C-13 NMR analysis and gas uptake measurements of pure and mixed gas hydrates:Development of natural gas transport and storage method using gas hydrate, Korean J. Chem. Eng. 20(6) (2003) 1085-1091. [25] W.X. Wang, C.L. Bray, D.J. Adams, A.I. Cooper, Methane storage in dry water gas hydrates, J. Am. Chem. Soc. 130(35) (2008) 11608-11609. [26] K.L. Wang, E.E. Davis, G. van der Kamp, Theory for the effects of free gas in subsea formations on tidal pore pressure variations and seafloor displacements, J. Geophys. Res. Sol. EA 103(B6) (1998) 12339-12353. [27] E.D. Sloan, S. Subramanian, P.N. Matthews, J.P. Lederhos, A.A. Khokhar, Quantifying hydrate formation and kinetic inhibition, Ind. Eng. Chem. Res. 37(8) (1998) 3124-3132. [28] S.P. Yan, M.X. Fang, W.F. Zhang, S.Y. Wang, Z.K. Xu, Z.Y. Luo, K.F. Cen, Experimental study on the separation of CO2 from flue gas using hollow fiber membrane contactors without wetting, Fuel Process. Technol. 88(5) (2007) 501-511. [29] P. Linga, A. Adeyemo, P. Englezos, Medium-pressure clathrate hydrate/membrane hybrid process for postcombustion capture of carbon dioxide, Environ. Sci. Technol. 42(1) (2008) 315-320. [30] J.F. Tang, D.L. Zeng, C.L. Wang, Y.L. Chen, L.M. He, N. Cai, Study on the influence of SDS and THF on hydrate-based gas separation performance, Chem. Eng. Res. Des. 91(9) (2013) 1777-1782. [31] Z.M. Xia, X.S. Li, Z.Y. Chen, Q.N. Lv, C.G. Xu, C. Chen, Hydrate-based capture CO2 and purification CH4 from simulated landfill gas with synergic additives based on gas solvent, Energy Proced. 61(2014) 450-454. [32] J. Chen, Y.H. Wang, X.M. Lang, S.S. Fan, Energy-efficient methods for production methane from natural gas hydrates, J. Energy Chem. 24(5) (2015) 552-558. [33] S.S. Fan, S.F. Li, J.Q. Wang, X.M. Lang, Y.H. Wang, Efficient capture of CO2 from simulated flue gas by formation of TBAB or TBAF semiclathrate hydrates, Energy Fuel 23(8) (2009) 4202-4208. [34] X.B. Zhou, Z. Long, Y. He, X.D. Shen, D.Q. Liang, Phase equilibria and the crystallographic properties of TBAB-CO2 semiclathrate hydrates, J. Chem. Eng. Data 63(5) (2018) 1249-1255. [35] C.G. Xu, Z.Y. Chen, J. Cai, X.S. Li, Study on pilot-scale CO2 separation from flue gas by the hydrate method, Energy Fuel 28(2) (2014) 1242-1248. [36] L.L. Shi, L.Z. Yi, X.D. Shen, W.Z. Wu, D.Q. Liang, The effect of tetrabutylphosphonium bromide on the formation process of CO2 hydrates, J. Mol. Liq. 229(2017) 98-105. [37] X.Y. Zang, D.Q. Liang, Phase equilibrium data for semiclathrate hydrate of synthesized binary CO2/CH4 gas mixture in tetra-n-butylammonium bromide aqueous solution, J. Chem. Eng. Data 62(2) (2017) 851-856. [38] Q.L. Ma, J.L. Qi, G.J. Chen, C.Y. Sun, Modeling study on phase equilibria of semiclathrate hydrates of pure gases and gas mixtures in aqueous solutions of TBAB and TBAF, Fluid Phase Equilib. 430(2016) 178-187. [39] A. Fukumoto, L.P.S. Silva, P. Paricaud, D. Dalmazzone, W. Furst, Modeling of the dissociation conditions of H-2+ CO2 semiclathrate hydrate formed with TBAB, TBAC, TBAF, TBPB, and TBNO3 salts. Application to CO2 capture from syngas, Int. J. Hydrog. Energy 40(30) (2015) 9254-9266. [40] A. Fukumoto, P. Paricaud, D. Dalmazzone, W. Bouchafaa, T.T.S. Ho, W. Furst, Modeling the dissociation conditions of carbon dioxide plus TBAB, TBAC, TBAF, and TBPB semiclathrate hydrates, J. Chem. Eng. Data 59(10) (2014) 3193-3204. [41] A. Mohammadi, M. Pakzad, A.H. Mohammadi, A. Jahangiri, Kinetics of (TBAF + CO2) semi-clathrate hydrate formation in the presence and absence of SDS, Pet. Sci. 15(2) (2018) 375-384. [42] W.Z. Wu, J.A. Guan, X.D. Shen, L.L. Shi, Z. Long, X.B. Zhou, D.Q. Liang, Phase equilibrium data of methane hydrate in the aqueous solutions of additive mixtures (THF plus TBAC), J. Chem. Eng. Data 61(10) (2016) 3498-3503. [43] X.L. Wang, M. Dennis, Phase equilibrium and formation behavior of the CO2-TBPB semiclathrate hydrate for cold storage applications, J. Chem. Eng. Data 62(3) (2017) 1083-1093. [44] W. Lin, D. Dalmazzone, W. Furst, A. Delahaye, L. Fournaison, P. Clain, Thermodynamic properties of semiclathrate hydrates formed from the TBAB plus TBPB plus water and CO2+ TBAB + TBPB plus water systems, Fluid Phase Equilib. 372(2014) 63-68. [45] J.W. Du, L.G. Wang, D.Q. Liang, D.L. Li, Phase equilibria and dissociation enthalpies of hydrogen semi-clathrate hydrate with tetrabutyl ammonium nitrate, J. Chem. Eng. Data 57(2) (2012) 603-609. [46] X.S. Li, H. Zhan,C.G. Xu,Z.Y. Zeng, Q.N. Lv, K.F. Yan,Effects of tetrabutyl-(ammonium/phosphonium) salts on clathrate hydrate capture of CO2 from simulated flue gas, Energy Fuel 26(4) (2012) 2518-2527. [47] H.Q. Yang, Z.H. Xu, M.H. Fan, R. Gupta, R.B. Slimane, A.E. Bland, I. Wright, Progress in carbon dioxide separation and capture:A review, J. Environ. Sci. China 20(1) (2008) 14-27. [48] X.S. Li, Z.M. Xia, Z.Y. Chen, K.F. Yan, G. Li, H.J. Wu, Gas hydrate formation process for capture of carbon dioxide from fuel gas mixture, Ind. Eng. Chem. Res. 49(22) (2010) 11614-11619. [49] X.S. Li, Z.M. Xia, Z.Y. Chen, K.F. Yan, G. Li, H.J. Wu, Equilibrium hydrate formation conditions for the mixtures of CO2+ H-2+ tetrabutyl ammonium bromide, J. Chem. Eng. Data 55(6) (2010) 2180-2184. [50] X.S. Li, Z.M. Xia, Z.Y. Chen, H.J. Wu, Precombustion capture of carbon dioxide and hydrogen with a one-stage hydrate/membrane process in the presence of tetran-butylammoniurn bromide (TBAB), Energy Fuel 25(3) (2011) 1302-1309. [51] X.S. Li, C.G. Xu, Z.Y. Chen, H.J. Wu, J. Cai, Effect of temperature fluctuation on hydrate-based CO2 separation from fuel gas, J. Nat. Gas Chem. 20(6) (2011) 647-653. [52] X.S. Li, J. Cai, Z.Y. Chen, C.G. Xu, Hydrate-based methane separation from the drainage coal-bed methane with tetrahydrofuran solution in the presence of sodium dodecyl sulfate, Energy Fuel 26(2) (2012) 1144-1151. [53] X.S. Li, C.G. Xu, Z.Y. Chen, J. Cai, Synergic effect of cyclopentane and tetra-n-butyl ammonium bromide on hydrate-based carbon dioxide separation from fuel gas mixture by measurements of gas uptake and X-ray diffraction patterns, Int. J. Hydrog. Energy 37(1) (2012) 720-727. [54] Q. Sun, X.Q. Guo, A.X. Liu, J. Dung, B. Liu, J.W. Zhang, G.J. Ghent, Experiment on the separation of air-mixed coal bed methane in THF solution by hydrate formation, Energy Fuel 26(7) (2012) 4507-4513. [55] C.G. Xu, J. Cai, X.S. Li, Q.N. Lv, Z.Y. Chen, H.W. Deng, Integrated process study on hydrate-based carbon dioxide separation from Integrated Gasification Combined Cycle (IGCC) synthesis gas in scaled-up equipment, Energy Fuel 26(10) (2012) 6442-6448. [56] C.G. Xu, X.S. Li, J. Cai, Z.Y. Chen, Hydrate-based carbon dioxide capture from simulated integrated gasification combined cycle gas, J. Nat. Gas Chem. 21(5) (2012) 501-507. [57] Z.X. Liao, X.Q. Guo, Y.Y. Zhao, Y.W. Wang, Q. Sun, A.X. Liu, C.Y. Sun, G.J. Chen, Experimental and modeling study on phase equilibria of semiclathrate hydrates of tetra-n-butyl ammonium bromide + CH4, CO2, N-2, or gas mixtures, Ind. Eng. Chem. Res. 52(51) (2013) 18440-18446. [58] C.G. Xu, S.H. Zhang, J. Cai, Z.Y. Chen, X.S. Li, CO2(carbon dioxide) separation from CO2-H-2(hydrogen) gas mixtures by gas hydrates in TBAB (tetra-n-butyl ammonium bromide) solution and Raman spectroscopic analysis, Energy 59(2013) 719-725. [59] C. Chen, X.S. Li, Z.Y. Chen, Z.M. Xia, K.F. Yan, J. Cai, Equilibrium hydrate formation conditions of CO2+ N-2+ SO2 ternary simulated flue gas in SO2 and tetra-nbutylammonium bromide containing aqueous solutions, J. Chem. Eng. Data 59(1) (2014) 103-109. [60] Q. Sun, G.Y. Chen, X.Q. Guo, A.X. Liu, Experiments on the continuous separation of gas mixtures via dissolution and hydrate formation in the presence of THF, Fluid Phase Equilib. 361(2014) 250-256. [61] Z.G. Sun, L.J. Jiao, Z.G. Zhao, G.L. Wang, H.F. Huang, Phase equilibrium conditions of semi-calthrate hydrates of (tetra-n-butyl ammonium chloride plus carbon dioxide), J. Chem. Thermodyn. 75(2014) 116-118. [62] C.G. Xu, X.S. Li, Research progress of hydrate-based CO2 separation and capture from gas mixtures, RSC Adv. 4(35) (2014) 18301-18316. [63] N. Ye, P. Zhang, Phase equilibrium conditions and carbon dioxide separation efficiency of tetra-n-butylphosphonium bromide hydrate, J. Chem. Eng. Data 59(9) (2014) 2920-2926. [64] B.Y. Zhang, C.H. Liu, Q. Wu, X. Gao, Raman spectroscopic studies on CO2-CH4-N-2 mixed-gas hydrate system, Spectrosc. Spectr. Anal. 34(6) (2014) 1560-1565. [65] X.X. Zhang, H. Liu, C.Y. Sun, P. Xiao, B. Liu, L.Y. Yang, C.H. Zhan, X.Q. Wang, N. Li, G.J. Chen, Effect of water content on separation of CO2/CH4 with active carbon by adsorption-hydration hybrid method, Sep. Purif. Technol. 130(2014) 132-140. [66] D.L. Zhong, Z. Li, Y.Y. Lu, D.J. Sun, Phase equilibrium data of gas hydrates formed from a CO2+ CH4 gas mixture in the presence of tetrahydrofuran, J. Chem. Eng. Data 59(12) (2014) 4110-4117. [67] K. Ding, D.L. Zhong, Y.Y. Lu, J.L. Wang, Enhanced precombustion capture of carbon dioxide by gas hydrate formation in water-in-oil emulsions, Energy Fuel 29(5) (2015) 2971-2978. [68] J.W. Du, L.G. Wang, Phase equilibrium measurements for clathrate hydrates of flue gas (CO2+ N-2+ O-2) in the presence of tetra-n-butyl ammonium bromide or trin-butylphosphine oxide, J. Chem. Thermodyn. 88(2015) 96-100. [69] Q. Li, S.S. Fan, Y.H. Wang, X.M. Lang, J. Chen, CO2 removal from biogas based on hydrate formation with tetra-n-butylammonium bromide solution in the presence of 1-butyl-3-methylimidazolium tetrafluoroborate, Energy Fuel 29(5) (2015) 3143-3148. [70] X.H. Wang, H.B. Qin, A. Dandekar, Y.F. Wang, Y.F. Sun, Q.L. Ma, B. Liu, L.Y. Yang, C.Y. Sun, G.J. Chen, Hydrate phase equilibrium of H-2/CH4/CO2 ternary gas mixtures and cage occupancy percentage of hydrogen molecules, Fluid Phase Equilib. 403(2015) 160-166. [71] M.J. Yang, Y.C. Song, L.L. Jiang, Y. Liu, X.J. Wang, Behaviour of hydrate-based technology for H-2/CO2 separation in glass beads, Sep. Purif. Technol. 141(2015) 170-178. [72] S.S. Fan, X.J. Long, X.M. Lang, Y.H. Wang, J. Chen, CO2 capture from CH4/CO2 mixture gas with tetra-n-butylammonium bromide semi-clathrate hydrate through a pressure recovery method, Energy Fuel 30(10) (2016) 8529-8534. [73] Z. Li, D.L. Zhong, Y.Y. Lu, J.L. Wang, S.L. Qing, J. Yan, Enhanced separation of carbon dioxidefrom a CO2+ CH4 gas mixture using a hybrid adsorption-hydrate formation process in the presence of coal particles, J. Nat. Gas Sci. Eng. 35(2016) 1472-1479. [74] Z.M. Xia, X.S. Li, Z.Y. Chen, G. Li, K.F. Yan, C.G. Xu, Q.N. Lv, J. Cai, Hydrate-based CO2 capture and CH4 purification from simulated biogas with synergic additives based on gas solvent, Appl. Energy 162(2016) 1153-1159. [75] Z.M. Xia, X.S. Li, Z.Y. Chen, K.F. Yan, C.G. Xu, J. Cai, Hydrate-based hydrogen purification from simulated syngas with synergic additives, Int. J. Hydrog. Energy 41(4) (2016) 2649-2659. [76] J. Yan, Y.Y. Lu, J.L. Wang, S.L. Qing, Y.R. Wang, Experimental investigation of precombustion CO2 capture using a fixed bed of coal particles in the presence of tetrahydrofuran, Energy Fuel 30(8) (2016) 6570-6577. [77] X.Y. Zang, D.Q. Liang, N.Y. Wu, Investigation of CO2 separation from synthesis CO2/CH4 mixture utilizing tetra-n-butyl ammonium bromide semi-hydrate, Can. J. Chem. Eng. 94(9) (2016) 1792-1800. [78] J.Z. Zhao, Y.S. Zhao, W.G. Liang, Hydrate-based gas separation for methane recovery from coal mine gas using tetrahydrofuran, Energy Technol. Ger. 4(7) (2016) 864-869. [79] D.L. Zhong, K. Ding, Y.Y. Lu, J. Yan, W.L. Zhao, Methane recovery from coal mine gas using hydrate formation in water-in-oil emulsions, Appl. Energy 162(2016) 1619-1626. [80] D.L. Zhong, Y.R. Wang, Y.Y. Lu, W.C. Wang, J.L. Wang, Phase equilibrium and kinetics of gas hydrates formed from CO2/H-2 in the presence of tetrahydrofuran and cyclohexane, J. Nat. Gas Sci. Eng. 35(2016) 1566-1572. [81] J. Cai, C.G. Xu, Z.M. Xia, Y. Zhang, X.S. Li, Raman spectroscopic study on hydratebased carbon dioxide separation from fuel gas in the presence of THF, Energy Procedia 143(2017) 540-546. [82] Z. Li, D.L. Zhong, Y.Y. Lu, J. Yan, Efficient CO2 Capture from a Simulated Shale Gas Using Tetra-n-butylphosphonium Bromide Semiclathrate Hydrate, 8th International Conference on Applied Energy (Icae2016), vol. 105, 2017, pp. 4904-4908. [83] Y. Luo, Z.Y. Yan, J. Li, G.J. Guo, X.Q. Guo, Q. Sun, A.X. Liu, Effects of dimethyl sulfoxide on phase equilibrium conditions of CO2 and IGCC fuel gas hydrate in the presence and absence of tetra-n-butyl ammonium bromide, J. Chem. Eng. Data 62(1) (2017) 188-193. [84] Z.M. Xia, X.S. Li, Z.Y. Chen, G. Li, J. Cai, Y. Wang, K.F. Yan, C.G. Xu, Hydrate-based acidic gases capture for clean methane with new synergic additives, Appl. Energy 207(2017) 584-593. [85] N. Xie, B. Chen, C.H. Tan, Z.Q. Liu, Energy consumption and exergy analysis of MEA-based and hydrate-based CO2 separation, Ind. Eng. Chem. Res. 56(51) (2017) 15094-15101. [86] C.G. Xu, Y.S. Yu, Y.L. Ding, J. Cai, X.S. Li, The effect of hydrate promoters on gas uptake, Phys. Chem. Chem. Phys. 19(32) (2017) 21769-21776. [87] J.J. Zheng, B.Y. Zhang, M. Khurana, P. Zhang, P. Linga, Systematic Evaluation of Semiclathrate-based Pre-combustion CO2 Capture in Presence of Tetra-nButylammonium Fluoride (TBAF):Effect of TBAF Concentration and Kinetic Additives, Energy Procedia 143(2017) 506-511. [88] D.L. Zhong, W.C. Wang, Y.Y. Lu, J. Yan, Using Tetra-n-butyl ammonium chloride semiclathrate hydrate for methane separation from low-concentration coal mine gas, Appl. Energy 227(2018) 8. [89] J. Cai, Y. Zhang, C.G. Xu, Z.M. Xia, Z.Y. Chen, X.S. Li, Raman spectroscopic studies on carbon dioxide separation from fuel gas via clathrate hydrate in the presence of tetrahydrofuran, Appl. Energy 214(2018) 92-102. [90] Z.Y. Li, Z.M. Xia, X.S. Li, Z.Y. Chen, J. Cai, G. Li, T. Lv, Hydrate-based CO2 capture from integrated gasification combined cycle syngas with tetra-n-butylammonium bromide and nano-Al2O3, Energy Fuel 32(2) (2018) 2064-2072. [91] J. Liu, J.X. Ding, D.Q. Liang, Experimental study on hydrate-based gas separation of mixed CH4/CO2 using unstable ice in a silica gel bed, Energy 157(2018) 54-64. [92] Y.W. Wang, Y. Deng, X.Q. Guo, Q. Sun, A.X. Liu, G.Q. Zhang, G. Yue, L.Y. Yang, Experimental and modeling investigation on separation of methane from coal seam gas (CSG) using hydrate formation, Energy 150(2018) 377-395. [93] M.J. Yang, H. Zhou, P.F. Wang, Y.C. Song, Effects of additives on continuous hydratebased flue gas separation, Appl. Energy 221(2018) 374-385. [94] Y.S. Yu, C.G. Xu, X.S. Li, Crystal morphology-based kinetic study of carbon dioxidehydrogen-tetra-n-butyl ammonium bromide hydrates formation in a static system, Energy 143(2018) 546-553. [95] M.J. Yang, W. Jing, J.F. Zhao, Z. Ling, Y.C. Song, Promotion of hydrate-based CO2 capture from flue gas by additive mixtures (THF (tetrahydrofuran) plus TBAB (tetra-n-butyl ammonium bromide)), Energy 106(2016) 546-553. [96] W.X. Mao, Z.W. Long, B. Long, Y.B. Wang, C.Y. Long, S.J. Qin, Theoretical study on the gas phase reaction of dimethyl sulfoxide with atomic chlorine in the presence of water, Struct. Chem. 24(2) (2013) 383-392. [97] Z.M. Xia, Z.Y. Chen, X.S. Li, Y. Zhang, K.F. Yan, Q.N. Lv, C.G. Xu, J. Cai, Thermodynamic equilibrium conditions for simulated landfill gas hydrate formation in aqueous solutions of additives, J. Chem. Eng. Data 57(11) (2012) 3290-3295. [98] X.S. Li, C.G. Xu, Y.S. Yu, Apparatus and combined process for carbon dioxide gas separation, USA Pat., 15/487.765, 2016. [99] R. Li, X.S. Li, Z.Y. Chen, Y. Zhang, C.G. Xu, Z.M. Xia, Anti-agglomerator of tetra-nbutyl ammonium bromide hydrate and its effect on hydrate-based CO2 capture, Energies 11(2) (2018) 399. [100] J.J. Zheng, P. Zhang, P. Linga, Semiclathrate hydrate process for pre-combustion capture of CO2 at near ambient temperatures, Appl. Energy 194(2017) 267-278. [101] S.H.B. Yang, P. Babu, S.F.S. Chua, P. Linga, Carbon dioxide hydrate kinetics in porous media with and without salts, Appl. Energy 162(2016) 1131-1140. [102] H.L. Chen, C.F. Wei, H.H. Tian, H.Z. Wei, NMR relaxation response of CO2 hydrate formation and dissociation in sand, Acta Phys. -Chim. Sin. 33(8) (2017) 1599-1604. [103] S.S. Fan, T.M. Guo, Hydrate formation of CO2-rich binary and quaternary gas mixtures in aqueous sodium chloride solutions, J. Chem. Eng. Data 44(4) (1999) 829-832. [104] Y. Sun, Q.M. Xue, Y.P. Zhou, L. Zhou, Sorption equilibria of CO2/CH4 mixture on activated carbon in presence of water, J. Colloid Interface Sci. 322(1) (2008) 22-26. [105] Y. Bi, T. Yang, K.H. Guo, Determination of the upper-quadruple-phase equilibrium region for carbon dioxide and methane mixed gas hydrates, J. Pet. Sci. Eng. 101(2013) 62-67. [106] S.D. Mao, Z.H. Duan, D.H. Zhang, L.L. Shi, Y.L. Chen, J. Li, Thermodynamic modeling of binary CH4-H2O fluid inclusions, Geochim. Cosmochim. Acta 75(20) (2011) 5892-5902. [107] Y.H. Wang, X.M. Lang, S.S. Fan, Hydrate capture CO2 from shifted synthesis gas, flue gas and sour natural gas or biogas, J. Energy Chem. 22(1) (2013) 39-47. [108] S.S. Fan, Q. Li, Y.H. Wang, X.M. Lang, J. Chen, Removal of CO2 from biogas by using tert-butyl peroxy-2-ethylhexanoate and water, Ind. Eng. Chem. Res. 55(29) (2016) 7958-7963. [109] Z. Li, D.L. Zhong, Y.Y. Lu, J. Yan, Z.L. Zou, Preferential enclathration of CO2 into tetran-butyl phosphonium bromide semiclathrate hydrate in moderate operating conditions:Application for CO2 capture from shale gas, Appl. Energy 199(2017) 370-381. [110] D.L. Zhong, Z. Li, Y.Y. Lu, J.L. Wang, J. Yan, Evaluation of CO2 removal from a CO2+ CH4 gas mixture using gas hydrate formation in liquid water and THF solutions, Appl. Energy 158(2015) 133-141. [111] D.L. Zhong, Z. Li, Y.Y. Lu, J.L. Wang, J. Yan, S.L. Qing, Investigation of CO2 capture from a CO2+ CH4 gas mixture by gas hydrate formation in the fixed bed of a molecular sieve, Ind. Eng. Chem. Res. 55(29) (2016) 7973-7980. [112] P. Babu, A. Nambiar, T.B. He, I.A. Karimi, J.D. Lee, P. Englezos, P. Linga, A review of clathrate hydrate based desalination to strenthen energy-water nexus, ACS Sustain. Chem. Eng. 6(2018) 14. [113] L.J. Wang, X.M. Zhang, H.H. Li, L. Shao, D. Zhang, L. Jiao, Theory research on desalination of brackish water using gas hydrate method, Adv. Mat. Res. 616-618(2013) 1202-1207. [114] Y.N. Lv, S.S. Wang, C.Y. Sun, G.J. Chen, Enhanced desalination and kinetics using cyclopentane hydrates in water-in-oil emulsions, Desalination 43(2017) 217-222. [115] J.N. Zheng, M.J. Yang, Y. Liu, D.Y. Wang, Y.C. Song, Effects of cyclopentane on CO2 hydrate formation and dissociation as a co-guest molecule for desalination, J. Chem. Thermodyn. 104(2017) 9-15. [116] H.F. Xu, M.N. Khan, C.J. Peters, E.D. Sloan, C.A. Koh, Hydrate-based desalination using cyclopentane hydrates at atmospheric pressure, J. Chem. Eng. Data 63(4) (2018) 1081-1087. [117] K.C. Kang, S.Y. Hong, S.J. Cho, D.H. Kim, J.D. Lee, Evaluation of desalination by nanostructured hydrateformation andpellet production process, J. Nanosci. Nanotechnol. 17(6) (2017) 4059-4062. [118] S.F. Li, F. Qi, K.G. Du, Y.M. Shen, D.B. Liu, L.H. Fan, An energy-efficient juice concentration technology by ethylene hydrate formation, Sep. Purif. Technol. 173(2017) 80-85. [119] T.B. He, S.K. Nair, P. Babu, P. Linga, I.A. Karimi, A novel conceptual design of hydrate based desalination (HyDesal) process by utilizing LNG cold energy, Appl. Energy 222(2018) 13-24. [120] Q.N. Lv, X.R. Zang, X.S. Li, G. Li, Effect of seawater ions on cyclopentane-methane hydrate phase equilibrium, Fluid Phase Equilib. 458(2018) 272-277. [121] G. Li, Y.H. Hwang, R. Radermacher, Review of cold storage materials for air conditioning application, Int. J. Refrig. 35(8) (2012) 2053-2077. [122] X.L. Wang, M. Dennis, L.Z. Hou, Clathrate hydrate technology for cold storage in air conditioning systems, Renew. Sust. Energ. Rev. 36(2014) 34-51. [123] K.H. Guo, B.F. Shu, W.J. Yang, Advances and applications of gas hydrate thermal energy storage technology, First Trabzon International Energy and Environmental Symposium (TIEES-96), vol. 1, Trabzon, Turkey 1996, p. 381. [124] S. Marinhas, A. Delahaye, L. Fournaison, D. Dalmazzone, W. Furst, J.P. Petitet, Modelling of the available latent heat of a CO2 hydrate slurry in an experimental loop applied to secondary refrigeration, Chem. Eng. Process. 45(3) (2006) 184-192. [125] D.G. Leaist, J.J. Murray, M.L. Post, D.W. Davidson, Enthalpies of decomposition and heat-capacities of ethylene-oxide and tetrahydrofuran hydrates, J. Phys. Chem. US 86(21) (1982) 4175-4178. [126] J. Douzet, M. Kwaterski, A. Lallemand, F. Chauuy, D. Flick, J.M. Herri, Prototyping of a real size air-conditioning system using a tetra-n-butylammonium bromide semiclathrate hydrate slurry as secondary two-phase refrigerant-Experimental investigations and modelling, Int. J. Refrig. 36(6) (2013) 1616-1631. [127] H. Ogoshi, S. Takao, Air-conditioning System Using Clathrate Hydrate Slurry, JFE Tech. Report (No. 3) (2004) 1-5. [128] H. Lin, Y.Y. Duan, Z.W. Wang, Surface tension measurements of 1,1,1,3,3-pentafluoropropane (HFC-245fa) and 1,1,1,3,3,3-hexafluoropropane (HFC-236fa) from 254 to 333 K, Fluid Phase Equilib. 214(1) (2003) 79-86. [129] S.S. Fan, D.Q. Liang, K.H. Guo, Hydrate equilibrium conditions for cyclopentane and a quaternary cyclopentane-rich mixture, J. Chem. Eng. Data 46(4) (2001) 930-932. [130] D.Q. Liang, The Thermodynamic Study on the Phase Equilibrium of New Type Cool Storage Media Refrigerant Gas Hydrate, Ph.D Thesis, Shanghai Jiaotong University, 2001. [131] J. Huang, T.Y. Wang, P.P. Zhu, J.B. Xiao, Preparation, characterization, and thermal properties of the microencapsulation of a hydrated salt as phase change energy storage materials, Thermochim. Acta 557(2013) 1-6. [132] Y.P. Wu, T. Wang, Hydrated salts/expanded graphite composite with high thermal conductivity as a shape-stabilized phase change material for thermal energy storage, Energy Convers. Manag. 101(2015) 164-171. [133] C.Z.Liu,L.Ma,Z.H.Rao,Y.M.Li,Synthesis and Characterization of Microencapsulated Phase Change Material of Magnesium Sulfate Heptahydrate/Urea Resin Via Emulsion Polymerization Method, Proceedings of the Asme 5th International Conference on Micro/Nanoscale Heat and Mass Transfer, vol. 2, 2016. [134] G.B. Zhou,Y.W. Han, Numerical simulation on thermal characteristics of supercooled salthydratePCMforenergystorage:Multiphasemodel, Appl. Therm. Eng. 125(2017) 145-152. [135] N. Xie, Z.W. Huang, Z.G. Luo, X.N. Gao, Y.T. Fang, Z.G. Zhang, Inorganic salt hydrate for thermal energy storage, Appl. Sci. 7(12) (2017) 1317. [136] L. Liang, X. Chen, Preparation and thermal properties of eutectic hydrate salt phase change thermal energy storage material, Int. J. Photoenergy 2018(2018) 1-96432047. [137] Y.S. Liu, M.J.Xie,X.J.Gao, Y.Z.Yang, Y.Sang, Experimental exploration of incorporating form-stable hydrate salt phase change materials into cement mortar for thermal energy storage, Appl. Therm. Eng. 140(2018) 112-119. [138] Y.M. Song, F. Wang, G. Guo, S.J. Luo, R.B. Guo, Energy-efficient storage of methane in the formed hydrates with metal nanoparticles-grafted carbon nanotubes as promoter, Appl. Energy 224(2018) 175-183. [139] F. Wang, Y.M. Song, G.Q. Liu, G. Guo, S.J. Luo, R.B. Guo, Rapid methane hydrate formation promoted by Ag&SDS-coated nanospheres for energy storage, Appl. Energy 213(2018) 227-234. [140] M. Wu, S. Wang, H. Liu, A study on inhibitors for the prevention of hydrate formation in gas transmission pipeline, J. Nat. Gas Chem. 16(1) (2007) 81-85. [141] J.D. Lee, H.J. Wu, P. Englezos, Cationic starches as gas hydrate kinetic inhibitors, Chem. Eng. Sci. 62(23) (2007) 6548-6555. [142] H.L. Lu, R. Matsumoto, Y. Tsuji, H. Oda, Flow characteristics and rheological properties of natural gas hydrate slurry in the presence of anti-agglomerant in a flow loop apparatus, Fluid Phase Equilib. 178(1-2) (2001) 225-232. [143] A. Krause, E. Borzeszkowski, The osmotic theory of the deterioration of metal hydroxide jellies examplified by radiographical amorphous iron(III)-hydroxide The inhibition of deterioration by prevention of water yield and retention of the jelly turgor-Amorphous and crystallised oxide hydrates and oxides XL, Kolloid Z. 82(3) (1938) 312-314. [144] F.L. Ning, L. Zhang, Y.Z. Tu, G.S. Jiang, M.Y. Shi, Gas-hydrate formation, agglomeration and inhibition in oil-based drilling fluids for deep-water drilling, J. Nat. Gas Chem. 19(3) (2010) 234-240. [145] C.K. Chu, P.C. Chen, Y.P. Chen, S.T. Lin, L.J. Chen, Inhibition effect of 1-ethyl-3-methylimidazolium chloride on methane hydrate equilibrium, J. Chem. Thermodyn. 91(2015) 141-145. [146] Z. Long, Y. He, X.B. Zhou, D.L. Li, D.Q. Liang, Phase behavior of methane hydrate in the presence of imidazolium ionic liquids and their mixtures, Fluid Phase Equilib. 439(2017) 1-8. [147] Q. Zhang, X.D. Shen, X.B. Zhou, D.Q. Liang, Inhibition effect study of carboxylterminated polyvinyl caprolactam on methane hydrate formation, Energy Fuel 31(1) (2017) 839-846. [148] C. Li, S. Bai, X.H. Li, Y.H. Zhao, L.X. Ren, K.Y. Zhu, X.Y. Yuan, Amphiphilic copolymers containing POSS and SBMA with N-vinylcaprolactam and N-vinylpyrrolidone for THF hydrate inhibition, ACS Omega 3(7) (2018) 7371-7379. [149] J.F. Xu, L.W. Li, J.X. Liu, X.P. Wang, Y.G. Yan, J. Zhang, The molecular mechanism of the inhibition effects of PVCaps on the growth of sI hydrate:an unstable adsorption mechanism, Phys. Chem. Chem. Phys. 20(12) (2018) 8326-8332. [150] H. Zhang, J.W. Du, Y.H. Wang, X.M. Lang, G. Li, J.B. Chen, S.S. Fan, Investigation into THF hydrate slurry flow behaviour and inhibition by an anti-agglomerant, RSC Adv. 8(22) (2018) 11946-11956. [151] Z. Long, X.B. Zhou, Y. He, D.L. Li, D.Q. Liang, Performance of mixture of ethylene glycol and glycine in inhibiting methane hydrate formation, J. Nat. Gas Sci. Eng. 56(2018) 134-140. [152] Q. Zhang, R. Kawatani, H. Ajiro, M.A. Kelland, Optimizing the kinetic hydrate inhibition performance of N-Alkyl-N-vinylamide copolymers, Energy Fuel 32(4) (2018) 4925-4931. [153] S.R. Xu, S.S. Fan, H.Y. Yao, Y.H. Wang, X.M. Lang, P.P. Lv, S.T. Fang, The phase equilibria of multicomponent gas hydrate in methanol/ethylene glycol solution based formation water, J. Chem. Thermodyn. 104(2017) 212-217. [154] S.R. Xu, S.S. Fan, Y.H. Wang, X.M. Lang, Recovery of monoethylene glycol combined with kinetic hydrate inhibitor, Chem. Eng. Sci. 171(2017) 293-302. [155] S.R. Xu, S.S. Fan, S.T. Fang, Y.H. Wang, X.M. Lang, Excellent synergy effect on preventing CH4 hydrate formation when glycine meets polyvinylcaprolactam, Fuel 206(2017) 19-26. [156] Q. Sheng, K.C. da Silveira, W. Tian, C. Fong, N. Maeda, R. Gubner, C.D. Wood, Simultaneous hydrate and corrosion inhibition with modified poly(vinyl caprolactam) polymers, Energy Fuel 31(7) (2017) 6724-6731. [157] Z. Li, F. Jiang, H.B. Qin, B. Liu, C.Y. Sun, G.J. Chen, Molecular dynamics method to simulate the process of hydrate growth in the presence/absence of KHIs, Chem. Eng. Sci. 164(2017) 307-312. [158] L. Ding, B.H. Shi, X.F. Lv, Y. Liu, H.H. Wu, W. Wang, J. Gong, Hydrate formation and plugging mechanisms in different gas-liquid flow patterns, Ind. Eng. Chem. Res. 56(14) (2017) 4173-4184. [159] H.Y. Zhong, Z.S. Qiu, D.M. Zhang, Z.C. Tang, W.A. Huang, W.J. Wang, Inhibiting shale hydration and dispersion with amine-terminated polyamidoamine dendrimers, J. Nat. Gas Sci. Eng. 28(2016) 52-60. [160] H.Y. Zhong, Z.S. Qiu, Z.C. Tang, X. Zhang, J.G. Xu, W.A. Huang, Study of 4, 4'-methylenebis-cyclohexanamine as a high temperature-resistant shale inhibitor, J. Mater. Sci. 51(16) (2016) 7585-7597. [161] H.J. Zhao, M.W. Sun, A. Firoozabadi, Anti-agglomeration of natural gas hydrates in liquid condensate and crude oil at constant pressure conditions, Fuel 180(2016) 187-193. [162] S.R. Xu, S.S. Fan, S.T. Fang, X.M. Lang, Y.H. Wang, J. Chen, Pectin as an extraordinary natural kinetic hydrate inhibitor, Sci. Rep. 6(2016) 23220. [163] P. Xu, X.M. Lang, S.S. Fan, Y.H. Wang, J. Chen, Molecular dynamics simulation of methane hydrate growth in the presence of the natural product pectin, J. Phys. Chem. C 120(10) (2016) 5392-5397. [164] Y.F. Sun, M.M. Xu, L. Zhang, X. Dong, Inhibition of gas hydrates and corrosion behavior in gas field production facilities, Proceedings of the 2016 International Conference on Innovative Material Science and Technology (Imst 2016), vol. 139, 2016, pp. 124-129. [165] X.D. Shen, L.L. Shi, Z. Long, X.B. Zhou, D.Q. Liang, Experimental study on the kinetic effect of N-butyl-N-methylpyrrolidinium bromide on CO2 hydrate, J. Mol. Liq. 223(2016) 672-677. [166] H.B. Qin, C.Y. Sun, Z.F. Sun, B. Liu, G.J. Chen, Relationship between the interfacial tension and inhibition performance of hydrate inhibitors, Chem. Eng. Sci. 148(2016) 182-189. [167] C.K. Chu, S.T. Lin, Y.P. Chen, P.C. Chen, L.J. Chen, Chain length effect of ionic liquid 1-alkyl-3-methylimidazolium chloride on the phase equilibrium of methane hydrate, Fluid Phase Equilib. 413(2016) 57-64. [168] H.Y. Zhong, Z.S. Qiu, D. Sun, D.M. Zhang, W.A. Huang, Inhibitive properties comparison of different polyetheramines in water-based drilling fluid, J. Nat. Gas Sci. Eng. 26(2015) 99-107. [169] H.Y. Zhong, W.A. Huang, Z.S. Qiu, J. Cao, B.Q. Xie, F.W. Wang, W. Zheng, Inhibition comparison between polyether diamine and formate salts as shale inhibitor in water-based drilling fluid, Energy Source A 37(18) (2015) 1971-1978. [170] X. Zhao, Z.S. Qiu, G.W. Zhou, W.A. Huang, Synergism of thermodynamic hydrate inhibitors on the performance of poly (vinyl pyrrolidone) in deepwater drilling fluid, J. Nat. Gas Sci. Eng. 23(2015) 47-54. [171] X. Zhao, Z.S. Qiu, W.A. Huang, Characterization of kinetics of hydrate formation in the presence of kinetic hydrate inhibitors during deepwater drilling, J. Nat. Gas Sci. Eng. 22(2015) 270-278. [172] S.S. Zhang, C. Zhang, Z.Z. Fan, M. Wang, Research of gas hydrate formation prediction and prevention, International Conference on Energy and Environment Engineering (Iceee 2015) 2015, pp. 501-505. [173] X.D. Shen, Z. Long, L.L. Shi, D.Q. Liang, Phase equilibria of CO2 hydrate in the aqueous solutions of N-butyl-N-methylpyrrolidinium bromide, J. Chem. Eng. Data 60(11) (2015) 3392-3396. [174] H.B. Qin, Z.F. Sun, X.Q. Wang, J.L. Yang, C.Y. Sun, B. Liu, L.Y. Yang, G.J. Chen, Synthesis and evaluation of two new kinetic hydrate inhibitors, Energy Fuel 29(11) (2015) 7135-7141. [175] Z. Long, X.B. Zhou, D.Q. Liang, D.L. Li, Experimental study of methane hydrate equilibria in[EMIM]-NO3 aqueous solutions, J. Chem. Eng. Data 60(9) (2015) 2728-2732. [176] L.Z. Yi, D.Q. Liang, X.B. Zhou, D.L. Li, J.W. Wang, Molecular dynamics simulations of carbon dioxide hydrate growth in electrolyte solutions of NaCl and MgCl2, Mol. Phys. 112(24) (2014) 3127-3137. [177] J. Chen, C.Y. Sun, B.Z. Peng, B. Liu, S. Si, M.L. Jia, L. Mu, K.L. Yan, G.J. Chen, Screening and compounding of gas hydrate anti-agglomerants from commercial additives through morphology observation, Energy Fuel 27(5) (2013) 2488-2496. [178] Y.H. Wang, Y.J. Chen, L. Bao, X.M. Lang, S.S. Fan, Molecular dynamics simulation of CH4 hydrale Decomposition in the Presence of Poly(2-ethyl-2-oxazoline), Acta Phys. -Chim. Sin. 28(7) (2012) 1683-1690. [179] X. Lou, A.L. Ding, N. Maeda, S. Wang, K. Kozielski, P.G. Hartley, Synthesis of effective kinetic inhibitors for natural gas hydrates, Energy Fuel 26(2) (2012) 1037-1043. [180] G.S. Jiang, T.L. Liu, F.L. Ning, Y.Z. Tu, L. Zhang, Y.B. Yu, L.X. Kuang, Polyethylene glycol drilling fluid for drilling in marine gas hydrates-bearing sediments:An experimental study, Energies 4(1) (2011) 140-150. [181] J. Hu, Y.H. Wang, X.M. Lang, J. Du, Q.P. Li, S.S. Fan, Synthesis and application of a novel combined kinetic hydrate inhibitor, Sci. China Technol. Sci. 54(12) (2011) 3289-3295. [182] J. Du, Y.H. Wang, X.M. Lang, S.S. Fan, Effects of polyvinyl alcohol on the adhesion force of tetrahydrofuran hydrate particles, Energy Fuel 25(7) (2011) 3204-3211. [183] C.F. Fan, A.T. Kan, P. Zhang, M.B. Tomson, Barite nucleation and inhibition at 0 to 200℃ with and without thermodynamic hydrate inhibitors, SPE J. 16(2) (2011) 440-450. [184] Y.J. Xu, M.L. Yang, X.X. Yang, Chitosan as green kinetic inhibitors for gas hydrate formation, J. Nat. Gas Chem. 19(4) (2010) 431-435. [185] C.P. Tang, X.X. Dai, J.W. Du, D.L. Li, X.Y. Zang, X.Y. Yang, D.Q. Liang, Kinetic studies of gas hydrate formation with low-dosage hydrate inhibitors, Sci. China Chem. 53(12) (2010) 2622-2627. [186] Y.J. Chen, Y.H. Wang, S.S. Fan, X.M. Lang, Molecular dynamic simulation of methane hydrate decomposition with polyvinyl alcohol at different concentrations, Acta Chim. Sin. 68(22) (2010) 2253-2258. [187] L.T. Chen, C.Y. Sun, G.J. Chen, J.Y. Zuo, H.J. Ng, Assessment of hydrate kinetic inhibitors with visual observations, Fluid Phase Equilib. 298(1) (2010) 143-149. [188] H. Zeng, H.L. Lu, E. Huva, V.K. Walker, J.A. Ripmeester, Differences in nucleator adsorption may explain distinct inhibition activities of two gas hydrate kinetic inhibitors, Chem. Eng. Sci. 63(15) (2008) 4026-4029. [189] J. Chen, Y.F. Wang, C.Y. Sun, F.G. Li, N. Ren, M.L. Jia, K.L. Yan, Y.N. Lv, B. Liu, G.J. Ghen, Evaluation of gas hydrate anti-agglomerant based on laser measurement, Energy Fuel 29(1) (2015) 122-129. [190] B.H. Shi, S. Chai, L.Y. Wang, X.F. Lv, H.S. Liu, H.H. Wu, W. Wang, D. Yu, J. Gong, Viscosity investigation of natural gas hydrate slurries with anti-agglomerants additives, Fuel 185(2016) 323-338. [191] K.L. Yan, C.Y. Sun, J. Chen, L.T. Chen, D.J. Shen, B. Liu, M.L. Jia, M. Niu, Y.N. Lv, N. Li, Z.Y. Song, S.S. Niu, G.J. Chen, Flow characteristics and rheological properties of natural gas hydrate slurry in the presence of anti-agglomerant in a flow loop apparatus, Chem. Eng. Sci. 106(2014) 99-108. [192] C.P.Tang, X.Y. Zhao,D.L. Li,Y.He, X.D.Shen,D.Q.Liang, Investigation ofthe flowcharacteristics of methane hydrate slurries with low flow rates, Energies 10(1) (2017) 145. [193] K. Ohgaki, K. Takano, H. Sangawa, T. Matsubara, S. Nakano, Methane exploitation by carbon dioxide from gas hydrates - Phase equilibria for CO2-CH4 mixed hydrate system, J. Chem. Eng. Jpn 29(3) (1996) 478-483. [194] T. Komai, T. Kawamura, Y. Yamamoto, Dynamics of reformation and replacement of CO2 and CH4 gas hydrates, Ann. N. Y. Acad. Sci. 220(2000) 272-280. [195] T. Komai, Y. Yamamo, K. Ohga, Dynamics of reformation and replacement of CO2 and CH4 gas hydrates, Ann. N. Y. Acad. Sci. 912(2000) 272-280. [196] T. Uchida, S. Takeya, T. Ebinuma, H. Narita, Replacing methane with CO2 in clathrate hydrate:Observations using Raman spectroscopy, Greenh. Gas Control Technol. (2001) 523-527. [197] E.M. Yezdimer, P.T. Cummings, A.A. Chialvo, Determination of the Gibbs free energy of gas replacement in SI clathrate hydrates by molecular simulation, J. Phys. Chem. A 106(34) (2002) 7982-7987. [198] S. Shimada, T. Matsui, T. Sekiguchi, Y. Sakuragi, Economic assessment of CO2 sequestration in coal seams, Greenhouse Gas Control Technologies, 6th International Conference, Kyoto, Japan 2003, pp. 545-550. [199] M. Ota, Y. Abe, M. Watanabe, R.L. Smith, H. Inomata, Methane recovery from methane hydrate using pressurized CO2, Fluid Phase Equilib. 228(2005) 553-559. [200] M. Ota, K. Morohashi, Y. Abe, M. Watanabe, R.L. Smith, H. Inomata, Replacement of CH4 in the hydrate by use of liquid CO2, Energy Convers. Manag. 46(11-12) (2005) 1680-1691. [201] Y. Park, D.Y. Kim, J.W. Lee, D.G. Huh, K.P. Park, J. Lee, H. Lee, Sequestering carbon dioxide into complex structures of naturally occurring gas hydrates, Proc. Natl. Acad. Sci. U. S. A. 103(34) (2006) 12690-12694. [202] M. Ota, T. Saito, T. Aida, M. Watanabe, Y. Sato, R.L. Smith, H. Inomata, Macro and microscopic CH4-CO2 replacement in CH4 hydrate under pressurized CO2, AIChE J 53(10) (2007) 2715-2721. [203] J.G. Sun, Z.Z. Li, X.Q. Guo, G.J. Chen, Experimental and kinetic studies on replacement of methane hydrate formed in SDS solution using pressurized CO2, J. Chem. Ind. Eng. 58(5) (2007) 1197-1203(in Chinese). [204] X.T. Zhou, S.S. Fan, D.Q. Liang, J.W. Du, Determination of appropriate condition on replacing methane from hydrate with carbon dioxide, Energy Convers. Manag. 49(8) (2008) 2124-2129. [205] C.Y. Geng, H. Wen, H. Zhou, Molecular simulation of the potential of methane reoccupation during the replacement of methane hydrate by CO2, J. Phys. Chem. A 113(18) (2009) 5463-5469. [206] Z.Z. Li, X.Q. Guo, L.Y. Yang, X.N. Ma, Exploitation of methane in the hydrate by use of carbon dioxide in the presence of sodium chloride, Pet. Sci. 6(4) (2009) 426-432. [207] Q. Yuan, C.Y. Sun, X. Yang, P.C. Ma, Z.W. Ma, B. Liu, Q.L. Ma, L.Y. Yang, G.J. Chen, Recovery of methane from hydrate reservoir with gaseous carbon dioxide using a three-dimensional middle-size reactor, Energy 40(1) (2012) 47-58. [208] Q. Yuan, C.Y. Sun, B. Liu, X. Wang, Z.W. Ma, Q.L. Ma, L.Y. Yang, G.J. Chen, Q.P. Li, S. Li, K. Zhang, Methane recovery from natural gas hydrate in porous sediment using pressurized liquid CO2, Energy Convers. Manag. 67(2013) 257-264. [209] Y. Zhang, L.J. Xiong, X.S. Li, Z.Y. Chen, C.G. Xu, Replacement of CH4 in hydrate in porous sediments with liquid CO2 injection, Chem. Eng. Technol. 37(12) (2014) 2022-2029. [210] Y.C. Song, S.L. Wang, M.J. Yang, W.G. Liu, J.F. Zhao, S.R. Wang, MRI measurements of CO2-CH4 hydrate formation and dissociation in porous media, Fuel 140(2015) 126-135. [211] C.G. Xu, J. Cai, F.H. Lin, Z.Y. Chen, X.S. Li, Raman analysis on methane production from natural gas hydrate by carbon dioxide-methane replacement, Energy 79(2015) 111-116. [212] X.B. Zhou, Z. Long, S. Liang, Y. He, L.Z. Yi, D.L. Li, D.Q. Liang, In situ Raman analysis on the dissociation behavior of mixed CH4-CO2 hydrates, Energy Fuel 30(2) (2016) 1279-1286. [213] J.X. Liu, Y.J. Yan, J.F. Xu, S.J. Li, G. Chen, J. Zhang, Replacement micro-mechanism of CH4 hydrate by N-2/CO2 mixture revealed by ab initio studies, Comput. Mater. Sci. 123(2016) 106-110. [214] Y.L. Ding, C.G. Xu, Y.S. Yu, X.S. Li, Methane recovery from natural gas hydrate with simulated IGCC syngas, Energy 120(2017) 192-198. [215] Y.N. Liu, L. Zhao, S. Deng, D.S. Bai, Evolution of bubbles in decomposition and replacement process of methane hydrate, Mol. Simul. 43(13-16) (2017) 1061-1073. [216] L.X. Zhang, L. Yang, J.Q. Wang, J.F. Zhao, H.S. Dong, M.J. Yang, Y. Liu, Y.C. Song, Enhanced CH4 recovery and CO2 storage via thermal stimulation in the CH4/CO2 replacement of methane hydrate, Chem. Eng. J. 308(2017) 40-49. [217] B. Li, T.F. Xu, G.B. Zhang, W. Guo, H.N. Liu, Q.W. Wang, L.L. Qu, Y.H. Sun, An experimental study on gas production from fracture-filled hydrate by CO2 and CO2/N-2 replacement, Energy Convers. Manag. 165(2018) 738-747. [218] X.M. Zhang, Y. Li, Z. Yao, J.P. Li, Q.B. Wu, Y.M. Wang, Experimental study on the effect of pressure on the replacement process of CO2-CH4 hydrate below the freezing point, Energy Fuel 32(1) (2018) 646-650. |
[1] | Tatyana P. Adamova, Sergey S. Skiba, Andrey Yu. Manakov, Sergey Y. Misyura. Growth rate of CO2 hydrate film on water–oil and water–gaseous CO2 interface [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 266-272. |
[2] | Peng-Fei Shen, Gang Li, Xiao-Sen Li, Bo Li, Jin-Ming Zhang. Application of fracturing technology to increase gas production in low-permeability hydrate reservoir: A numerical study [J]. Chinese Journal of Chemical Engineering, 2021, 34(6): 267-277. |
[3] | Ekta Chaturvedi, Sukumar Laik, Ajay Mandal. A comprehensive review of the effect of different kinetic promoters on methane hydrate formation [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 1-16. |
[4] | Qihui Hu, Xiaoyu Wang, Wuchang Wang, Yuxing Li, Shuai Liu. Growth and aggregation micromorphology of natural gas hydrate particles near gas-liquid interface under stirring condition [J]. Chinese Journal of Chemical Engineering, 2021, 40(12): 65-77. |
[5] | Xin Zheng, Shuai Ban, Bei Liu, Guangjin Chen. Strain-controlled graphdiyne membrane for CO2/CH4 separation: Firstprinciple and molecular dynamic simulation [J]. Chinese Journal of Chemical Engineering, 2020, 28(7): 1898-1903. |
[6] | Shuqi Fang, Xinyue Zhang, Jingyi Zhang, Chun Chang, Pan Li, Jing Bai. Evaluation on the natural gas hydrate formation process [J]. Chinese Journal of Chemical Engineering, 2020, 28(3): 881-888. |
[7] | Vyacheslav G. Smirnov, Valeriy V. Dyrdin, Andrey Yu. Manakov, Zinfer R. Ismagilov. Decomposition of carbon dioxide hydrate in the samples of natural coal with different degrees of metamorphism [J]. Chinese Journal of Chemical Engineering, 2020, 28(2): 492-501. |
[8] | Xiaoya Zang, Lihua Wan, Deqing Liang. Investigation of the hydrate formation process in fine sediments by a binary CO2/N2 gas mixture [J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2157-2163. |
[9] | Sheshan Bhimrao Meshram, Omkar S Kushwaha, Palle Ravinder Reddy, Gaurav Bhattacharjee, Rajnish Kumar. Investigation on the effect of oxalic acid, succinic acid and aspartic acid on the gas hydrate formation kinetics [J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2148-2156. |
[10] | Lei Yang, Yulong Liu, Hanquan Zhang, Bo Xiao, Xianwei Guo, Rupeng Wei, Lei Xu, Lingjie Sun, Bin Yu, Shudong Leng, Yanghui Li. The status of exploitation techniques of natural gas hydrate [J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2133-2147. |
[11] | Yanhong Wang, Shuanshi Fan, Xuemei Lang. Reviews of gas hydrate inhibitors in gas-dominant pipelines and application of kinetic hydrate inhibitors in China [J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2118-2132. |
[12] | Cuiping Tang, Deqing Liang. Inhibitory effects of novel green inhibitors on gas hydrate formation [J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2107-2117. |
[13] | Zhiqiang Liu, Yunxiao Lu, Jiuhui Cheng, Qiang Han, Zunjing Hu, Linlin Wang. Geomechanics involved in gas hydrate recovery [J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2099-2106. |
[14] | Wenxiang Zhang, Shuanshi Fan, Yanhong Wang, Xuemei Lang, Kai Guo, Jianbiao Chen. Evidence for pore-filling gas hydrates in the sediments through morphology observation [J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2081-2088. |
[15] | Prajakta Nakate, Bappa Ghosh, Subhadip Das, Sudip Roy, Rajnish Kumar. Molecular dynamics study on growth of carbon dioxide and methane hydrate from a seed crystal [J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2074-2080. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||