Chinese Journal of Chemical Engineering ›› 2019, Vol. 27 ›› Issue (9): 2062-2073.DOI: 10.1016/j.cjche.2018.11.007
Previous Articles Next Articles
Fengguang Li1, Qing Yuan2, Tianduo Li1, Zhi Li1, Changyu Sun3, Guangjin Chen3
Received:
2018-09-25
Revised:
2018-10-26
Online:
2019-12-04
Published:
2019-09-28
Contact:
Changyu Sun, Guangjin Chen
Supported by:
Fengguang Li1, Qing Yuan2, Tianduo Li1, Zhi Li1, Changyu Sun3, Guangjin Chen3
通讯作者:
Changyu Sun, Guangjin Chen
基金资助:
Fengguang Li, Qing Yuan, Tianduo Li, Zhi Li, Changyu Sun, Guangjin Chen. A review: Enhanced recovery of natural gas hydrate reservoirs[J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2062-2073.
Fengguang Li, Qing Yuan, Tianduo Li, Zhi Li, Changyu Sun, Guangjin Chen. A review: Enhanced recovery of natural gas hydrate reservoirs[J]. 中国化学工程学报, 2019, 27(9): 2062-2073.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2018.11.007
[1] E.D. Sloan, C.A. Koh, Clathrate Hydrates of Natural Gases, (Vol. third ed) CRC Press, Boca Raton, FL, USA, 2008. [2] C.Y. Sun, W.Z. Li, X. Yang, F.G. Li, Q. Yuan, L. Mu, J. Chen, B. Liu, G.J. Chen, Progress in research of gas hdyrate, Chin. J. Chem. Eng. 19(1) (2011) 151-162. [3] K.A. Kvenvolden, Methane hydrate-A major reservoir of carbon in the shallow geosphere, Chem. Geol. 71(1998) 41-51. [4] P. Englezos, Clathrate hydrates, Ind. Eng. Chem. Res. 32(1993) 1251-1274. [5] X.S. Li, C.G. Xu, Y. Zhang, X.K. Ruan, G. Li, Y. Wang, Investigation into gas production from natural gas hydrate:A review, Appl. Energy 172(2016) 286-322. [6] Z. Su, L. Huang, N.Y. Wu, S.X. Yang, Effect of thermal stimulation on gas production from hydrate deposits in Shenhu area of the South China Sea, Sci. China Earth Sci. 56(4) (2013) 601-610. [7] J.C. Feng, G. Li, X.S. Li, B. Li, Z.Y. Chen, Evolution of hydrate dissociation by warm brine stimulation combined depressurization in the South China Sea, Energies 6(10) (2013) 5402-5425. [8] X. Xu, Z.F. Wan, X.Q. Wang, Y.F. Sun, B. Xia, The characteristics of heat flow in the Shenhu gas hydrate drilling area, northern South China Sea, Mar. Geophys. Res. 37(4) (2016) 1-11. [9] L. Chen, Y.C. Feng, J. Okajima, A. Komiya, S. Maruyama, Production behavior and numerical analysis for 2017 methane hydrate extraction test of Shenhu, South China Sea, J. Nat. Gas Sci. Eng. 53(2018) 55-66. [10] B. Wang, P. Huo, T.T. Luo, Z. Fan, F.L. Liu, B. Xiao, M.J. Yang, J.F. Zhao, Y.C. Song, Analysis of the physical properties of hydrate sediments recovered from the Pearl RivermouthbasinintheSouth China Sea:Preliminaryinvestigation forgashydrate exploitation, Energies 10(4) (2017) 531. [11] G. Guerin, D. Goldberg, Sonic waveform attenuation in gas hydrate-bearing sediments from the Mallik 2L-38 research well, Mackenzie Delta, Canada, J. Geophys. Res. B5(2002) 107. [12] T. Fujii, K. Suzuki, T. Takayama, Geological setting and characterization of a methane hydrate reservoir distributed at the first offshore production test site on the Daini-Atsumi Knoll in the eastern Nankai Trough, Japan, Mar. Pet. Geol. 66(2015) 310-322. [13] K.U. Heeschen, S. Abendroth, M. Priegnitz, E. Spangenberg, J. Thaler, J.M. Schicks, Gas production from methane hydrate:a laboratory simulation of the multistage depressurization test in Mallik, Northwest Territories, Canada, Energy Fuel 30(2016) 6210-6219. [14] M. Kurihara, A. Sato, K. Funatsu, H. Ouchi, K. Yamamoto, M. Numasawa, T. Ebinuma, H. Narita, Y. Masuda, S.R., D., F. Wright, D.I. Ashford, Analysis of production data for 2007/2008 mallik gas hydrate production tests in Canada, Scociety of Petroleum Engineers-International Oil and Gas Conference, IOGCEC2010, Beijing, China 2010, pp. 2908-2931. [15] M. Tamaki, T. Fujii, K. Suzuki, Characterization and prediction of the gas hydrate reservoir at the second offshore gas production test site in the eastern Nankai Trough, Japan, Energies 10(1678). [16] K. Yamamoto, Overview and introduction:Pressure core-sampling and analysis in the 2012-2013 MH21 offshore test of gas production from methane hydrate in the eastern Nankai Trough, Mar. Pet. Geol. 66(2015) 296-309. [17] G.J. Moridis, T.S. Collett, Strategies for gas production from hydrate accumulations under various geologic conditions, Proceeding Tough Symposium, Lawrence Berkeley National Laboratory, Berkeley, California, 2003. [18] G.J. Moridis, T.S. Collett, Gas Production From Class 1 Hydrate Accumulation, Kluwer Academic, New York, 2004. [19] M. Kurihara, H. Ouchi, H. Narita, Y. Masuda, Gas production form methane hydrate reservoirs, Proceedings of the 7th International Conference on Gas Hydrates (ICGH), Edinburgh, UK, 2011. [20] G.J. Moridis, M.T. Reagan, S.J. Kim, Y. Seol, K. Zhang, Evaluation of the gas production potential of marine hydrate deposits in the Ulleung Basin of the Korean East Sea, SPE J. 14(4) (2009) 759-781. [21] T.S. Collett, G.D. Ginsburg, Gas hydrates in the Messoyakha gas field of the west Siberian basin-A re-examination of the geologic evidence, Int Offshore Polar Eng (1997) 96-103. [22] G. Li, B. Li, X.S. Li, Y. Zhang, Y. Wang, Experimental and numerical studies on gas production from methane hydrate in porous media by depressurization in pilotscale hydrate simulator, Energy Fuel 26(2012) 6300-6310. [23] X.S. Li, Y. Wang, G. Li, Z.Y. Chen, H.J. Wu, Experimental investigation into the production behavior of methane hydrate in porous sediment by depressurization with a novel three-dimensional cubic hydrate simulator, Energy Fuel 25(10) (2011) 4497-4505. [24] Y. Wang, X.S. Li, Z.Y. Chen, Y. Wang, X.K. Ruan, Effect of hydrate saturation on the methane hydrate dissociation by depressurization in sediments in a cubic hydrate simulator, Ind. Eng. Chem. Res. 54(2015) 2627-2637. [25] X.S. Li, Y. Wang, G. Li, Y. Wang, Experimental investigations into gas production behaviors from methane hydrate with different methods in a cubic hydrate simulator, Energy Fuel 26(2012) 1124-1134. [26] B. Li, X.S. Li, G. Li, J.C. Feng, Y. Wang, Depressurization induced gas production from hydrate deposits with low gas saturation in a pilot-scale hydrate simulator, Appl. Energy 129(2014) 274-286. [27] Y. Wang, J.C. Feng, X.S. Li, Y. Zhang, G. Li, Large scale experimental evaluation to methane hydrate dissociation below quadruple point in sandy sediment, Appl. Energy 162(2016) 372-381. [28] Y. Wang, J.C. Feng, G. Li, X.S. Li, Y. Zhang, Analytic modeling and large-scale experimental study of mass and heat transfer during hydrate dissociation in sediment with different dissociation methods, Energy 90(2015) 1931-1948. [29] B. Liu, Q. Yuan, K.H. Su, X. Yang, B.C. Wu, C.Y. Sun, G.J. Chen, Experimental simulation of the exploitation of natural gas hydrate, Energies 5(2012) 466-493. [30] Z.Y. Yin, Z.R. Chong, H.K. Tan, P. Linga, Review of gas hydrate dissociation kinetic models for energy recovery, J. Nat. Gas Sci. Eng. 35(2016) 1362-1387. [31] Y. Zhou, M.J. Castaldi, T.M. Yegulalp, Experimental investigation of methane gas production from methane hydrate, Ind. Eng. Chem. Res. 48(2009) 3142-3149. [32] K.H. Su, C.Y. Sun, X. Yang, G.J. Chen, S.S. Fan, Experimental investigation of methane hydrate dissociation by depressurizing in porous media with a 3-dimension device, J. Nat. Gas Chem. 19(2010) 210-216. [33] Y. Konno, Y. Jin, K. Shinjou, J. Nagao, Experimental evaluation of the gas recovery factor of methane hydrate in sandy sediment, RSC Adv. 4(93) (2014) 51666-51675. [34] J.R. Zhong, X.Y. Zeng, F.H. Zhou, Q.D. Ran, C.Y. Sun, R.Q. Zhong, L.Y. Yang, G.J. Chen, C.A. Koh, Self-preservation and structural transition of gas hydrates during dissociation below the ice point:an in situ study using Raman spectroscopy, Sci. Rep. 6(2016), 38855. [35] S.F. Dec, K.E. Bowler, L.L. Stadterman, C.A. Koh, E.D. Sloan, NMR study of methane + ethane structure I hydrate decomposition, J. Phys. Chem. A 111(20) (2007) 4297-4303. [36] B. Wang, H.S. Dong, Y.Z. Liu, X. Lv, Y. Liu, J.F. Zhao, Y.C. Song, Evaluation of thermal stimulation on gas production from depressurized methane hydrate deposits, Appl. Energy 227(2018) 710-718. [37] L.X. Zhang, J.F. Zhao, H.S. Dong, Y.C. Zhao, Y. Liu, Y. Zhang, Y.C. Song, Magnetic resonance imaging for in-situ observation of the effect of depressurizing range and rate on methane hydrate dissociation, Chem. Eng. Sci. 144(2016) 135-143. [38] J.F. Zhao, Z. Fan, H.S. Dong, Z. Yang, Y.C. Song, Influence of reservoir permeability on methane hydrate dissociation by depressurization, Int. J. Heat Mass Transf. 103(2016) 265-276. [39] L. Yang, A. Falenty, M. Chaouachi, D. Haberthür, W.F. Kuhs, Synchrotron X-ray computed microtomography study on gas hydrate decomposition in a sedimentary matrix, Geochem. Geophys. Geosyst. 17(9) (2016) 3717-3732. [40] G. Li, X.S. Li, B. Yang, Y. Zhang, L.P. Duan, Y. Wang, Z.Y. Chen, N.S. Huang, H.J. Wu, Experimental investigation into gas production from methane hydrate in sediment by depressurization in a novel pilot-scale hydrate simulator, Appl. Energy 93(2012) 722-732. [41] J.C. Feng, Y. Wang, X.S. Li, G. Li, Y. Zhang, Z.Y. Chen, Effect of horizontal and vertical well patterns on methane hydrate dissociation behaviors in pilot-scale hydrate simulator, Appl. Energy 145(2015) 69-79. [42] G.D. Holder, P.F. Angert, Simulation of gas production from a reservoir containing both gas hydrates and free natural gas, SPE Annual Technical Conference and Exhibition, 1982. [43] Z.R. Chong, Z. Yin, J.H. Clifton Tan, P. Linga, Experimental investigations on energy recovery from water-saturated hydrate bearing sediments via depressurization approach, Appl. Energy 204(2017) 1513-1525. [44] T.J. Kneafsey, L. Tomutsa, G.J. Moridis, Y. Seol, B.M. Freifeld, C.E. Taylor, A. Gupta, Methane hydrate formation and dissociation in a partially saturated core-scale sand sample, J. Pet. Sci. Eng. 56(2007) 108-126. [45] Y.F. Makogon, R.Y. Omelchenko, Commercial gas production from Messoyakha deposit in hydrate conditions, J. Nat. Gas Sci. Eng. 11(2013) 1-6. [46] B. Wang, Z. Fan, J.F. Zhao, X. Lv, W.X. Pang, Q.P. Li, Influence of intrinsic permeability of reservoir rocks on gas recovery from hydrate deposits via a combined depressurization and thermal stimulation approach, Appl. Energy 229(2018) 858-871. [47] Y.C. Song, L.X. Zhang, Q. Lv, M.J. Yang, Z. Ling, J.F. Zhao, Assessment of gas production from natural gas hydrate using depressurization, thermal stimulation and combined methods, RSC Adv. 6(53) (2016) 47357-47367. [48] G.D. Holder, P.F. Angert, V.T. John, S. Yen, A thermodynamic evaluation of thermal recovery of gas hydrates in the earth, J. Pet. Technol. 34(1982) 1127-1132. [49] P.L. McGuire, Methane hydrate gas production by thermal stimulation, Proc., Fourth Nalt. Research Council of Canada Permafrost Conference, Calgary 1981, pp. 356-362. [50] L.G. Tang, R. Xiao, C. Huang, Z.P. Feng, S.S. Fan, Experimental investigation of production behavior of gas hydrate under thermal stimulation in unconsolidated sediment, Energy Fuel 19(2005) 2402-2407. [51] X. Yang, C.Y. Sun, Q. Yuan, P.C. Ma, G.J. Chen, Experimental study on gas production from methane hydrate-bearing sand by hot-water cyclic injection, Energy Fuel 24(11) (2010) 5912-5920. [52] X.S. Li, L.H. Wan, G. Li, Q.P. Li, Z.Y. Chen, K.F. Yan, Experimental investigation into the production behavior of methane hydrate in porous sediment with hot brine stimulation, Ind. Eng. Chem. Res. 47(2008) 9696-9702. [53] Q. Yuan, C.Y. Sun, X.H. Wang, X.Y. Zeng, X. Yang, B. Liu, Z.W. Ma, Q.P. Li, L. Feng, G.J. Chen, Experimental study of gas production from hydrate dissociation with continuous injection mode using a three-dimensional quiescent reactor, Fuel 106(2013) 417-424. [54] S.X. Li, Z.Q. Wang, X.H. Xu, R.Y. Zheng, J. Hou, Experimental study on dissociation of hydrate reservoirs with different saturations by hot brine injection, J. Nat. Gas Sci. Eng. 46(2017) 555-562. [55] X.S. Li, B. Yang, G. Li, B. Li, Y. Zhang, Z.Y. Chen, Experimental study on gas production from methane hydrate in porous media by huff and puff method in pilot-scale hydrate simulator, Fuel 94(2012) 486-494. [56] J.Y. Sun, Y.G. Ye, C.Y. Liu, G.T. Zhao, S.B. Diao, Q.G. Meng, Simulation experiment of gas hydrates formation and exploitation in sediments, Periodical Ocean Univ. China 39(6) (2009) 1289-1294. [57] D.L. Li, D.Q. Liang, S.S. Fan, X.S. Li, L.G. Tang, N.S. Huang, In situ hydrate dissociation using microwave heating:Preliminary Study, Energy Convers. Manag. 49(2008) 2207-2213. [58] F.L. Ning, G.S. Jiang, F.L. Tang, X. Wu, X.Y. Pan, Exploitation of submarine gas hydrate by geothermal energy, Nat. Gas Ind. 49(8) (2006) 2207-2213. [59] H. Minagawa, Y. Nishikawa, H. Takahashi, H. Narita, Electrical heating of hydrate sediment for gas production, Proceedings of the Eighth ISOPE Ocean Mining Symposium, Chen nai, India, 2009. [60] H. Minagawa, T. Ito, S. Kimura, H. Kaneko, S. Noda, N. Tenma, Depressurization and electrical heating of methane hydrate sediment for gas production:laboratoryscale experiments, J. Nat. Gas Sci. Eng. 50(2018) 147-156. [61] J.F. Zhao, Z. Fan, B. Wang, H.S. Dong, Y. Liu, Y.C. Song, Simulation of microwave stimulation for the production of gas from methane hydrate sediment, Appl. Energy 168(2016) 25-37. [62] M.S. Selim, E.D. Sloan, Heat and mass transfer during the dissociation of hydrates in porous media, AICHE J. 35(1989) 1049-1052. [63] J. Lee, Experimental study on the dissociation behavior and productivity of gas hydrate by brine injection scheme in porous rock, Energy Fuel 24(2010) 456-463. [64] T. Kawamura, Y. Sakamoto, M. Ohtake, Y. Yamamoto, H. Haneda, J.H. Yoon, T. Komai, Dissociation behavior of hydrate core sample using thermodynamic inhibitor, Int. J. Offshore Polar Eng. 16(2006) 5-9. [65] W. Afzal, A.H. Mohammadi, D. Richon, Experimental measurements and predictions of dissociation conditions for methane, ethane, propane, and carbon dioxide simple hydrates in the presence of diethylene glycol aqueous solutions, J. Chem. Eng. Data 53(2008) 663-666. [66] J. Javanmardi, S. Babaee, A. Eslamimanesh, A.H. Mohammadi, Experimental measurements and predictions of gas hydrate dissociation conditions in the presence of methanol and ethane-1,2-diol aqueous solutions, J. Chem. Eng. Data 57(2012) 1474-1479. [67] S.S. Fan, Y. Zhang, G. Tian, D. Liang, D.L. Li, Natural gas hydrate dissociation by presence of ethylene glycol, Energy Fuel 20(2006) 324-336. [68] T. Kawamura, Y. Sakamoto, M. Ohtake, Y. Yamamoto, T. Komai, H. Haneda, T. Komai, Dissociation behavior of pellet-shaped methane hydrate in ethylene glycol and silicone oil. Part 1:Dissociation above ice point, Ind. Eng. Chem. Res. 45(2006) 360-374. [69] K.L. Yan, C.Y. Sun, J. Chen, L.T. Chen, D.J. Shen, B. Liu, M.L. Jia, M. Niu, Y.N. Lv, N. Li, Z.Y. Song, S.S. Niu, G.J. Chen, Flow characteristics and rheological properties of natural gas hydrate slurry in the presence of anti-agglomerant in a flow loop apparatus, Chem. Eng. Sci. 106(2014) 99-108. [70] J. Chen, K.L. Yan, G.J. Chen, C.Y. Sun, B. Liu, N. Ren, D.J. Shen, M. Niu, Y.N. Lv, N. Li, A.K. Sum, Insights into the formation mechanism of hydrate plugging in pipelines, Chem. Eng. Sci. 122(2015) 284-290. [71] Z. Atik, C. Windmeier, L.R. Oellrich, Experimental gas hydrate dissociation pressures for pure methane in aqueous solutions of MgCl2 and CaCl2 and for a (methane + ethane) gas mixture in an aqueous solution of (NaCl + MgCl2), J. Chem. Eng. Data 51(2006) 1862-1867. [72] A.H. Mohammadi, D. Richon, Estimating the hydrate safety margin in the presence of salt or organic inhibitor using refractive index data of aqueous solution, Ind. Eng. Chem. Res. 45(2006) 8207-8212. [73] A.H. Mohammadi, D. Richon, Estimating the hydrate safety margin using surface tension data of salt aqueous solution, Ind. Eng. Chem. Res. 45(2006) 8154-8157. [74] A.H. Mohammadi, D. Richon, Gas hydrate phase equilibrium in the presence of ethylene glycol or methanol aqueous solution, Ind. Eng. Chem. Res. 49(2010) 8865-8869. [75] A.H. Mohammadi, D. Richon, Phase equilibria of methane hydrates in the presence of methanol and/or ethylene glycol aqueous solutions, Ind. Eng. Chem. Res. 49(2010) 925-928. [76] A.H. Mohammadi, W. Afzal, D. Richon, Experimental data and predictions of dissociation conditions for ethane and propane simple hydrates in the presence of distilled water and methane, ethane, propane, and carbon dioxide simple hydrates in the presence of ethanol aqueous solutions, J. Chem. Eng. Data 53(2008) 73-76. [77] A. Elgibaly, A. Elkamel, Optimal hydrate inhibition policies with the aid of neural networks, Energy Fuel 13(1999) 105-113. [78] T. Kawamura, Y. Yamamoto, M. Ohtake, Y. Sakamoto, T. Komai, H. Haneda, Experimental study on dissociation of hydrate core sample accelerated by thermodynamic inhibitors for gas recovery from natural gas hydrate, Proceedings of the Fifth International Conference on Gas Hydrates, Trondheim, Norway, 2005. [79] J.H. Sira, S.L. Patil, V.A. Kamath, Study of hydrate dissociation by methanol and glycol injection, SPE Paper 20770, 1990. [80] Z.R. Chong, J.W. Koh, P. Linga, Effect of KCl and MgCl2 on the kinetics of methane hydrate formation and dissociation in sandy sediments, Energy 137(2015) 518-529. [81] J.C. Feng, Y. Wang, X.S. Li, Hydrate dissociation induced by depressurization in conjunction with warm brine stimulation in cubic hydrate simulator with silica sand, Appl. Energy 174(2016) 181-191. [82] G. Li, X.S. Li, L.G. Tang, Y. Zhang, Experimental investigation of production behavior of methane hydrate under ethylene glycol injection in unconsolidated sediment, Energy Fuel 21(2007) 3388-3393. [83] Y.F. Makogon, Hydrates of Natural Gas, PennWell, Tulsa, OK, USA, 1981131-132. [84] K. Ohgaki, K. Takano, H. Sangawa, T. Matsubara, S. Nakano, Methane exploitation by carbon dioxide from gas hydrates. Phase equilibria for CO2-CH4 mixed hydrate system, J. Chem. Eng. Jpn 29(1996) 478-483. [85] M. Ota, T. Saito, T. Aida, M. Watanabe, Y. Sato, R.L. Smith, H. Inomata, Macro and microscopic CH4-CO2 replacement in CH4 hydrate under pressurized CO2, AIChE J. 53(2007) 2715-2721. [86] L.X. Zhang, L. Yang, J.Q. Wang, J.F. Zhao, H.S. Dong, M.J. Yang, Y. Liu, Y.C. Song, Enhanced CH4 recovery and CO2 storage via thermal stimulation in the CH4/CO2 replacement of methane hydrate, Chem. Eng. J. 308(2017) 40-49. [87] Y. Lee, Y. Seo, Experimental verfication of CH4-CO2 or CH4-flue gas replacement that occurs in various gas hydrate structures, Proceedings of the 9th International Conference on Gas Hydrates, USA:Denver, Colorado, 2017. [88] J.M. Schicks, From lab to field, from micro to macro-test of technologies for the production of hydrate bonded CH4 via CO2 sequestration in hydrates, Proceedings of the 9th International Conference on Gas Hydrates, USA:Denver, Colorado, 2017. [89] K.A. Birkedal, L.P. Hauge, A. Graue, G. Ersland, Transport mechanisms for CO2-CH4 exchange and safe CO2 storage in hydrate-bearing sandstone, Energies 8(2015) 4073-4095. [90] L. Mu, N.V. Solms, Hydrate thermal dissociation behavior and dissociation enthalpies in methane-carbon dioxide swapping process, J. Chem. Thermodyn. 117(2018) 33-42. [91] J.F. Zhao, Y.C. Song, X.L. Lim, W.H. Lam, Opportunities and challenges of gas hydrate policies with consideration of environmental impacts, Renew. Sustain. Energy Rev. 70(2017) 875-885. [92] Q. Yuan, C.Y. Sun, B. Liu, X. Wang, Z.W. Wang, Q.L. Ma, L.Y. Yang, G.J. Chen, Q.P. Li, S. Li, K. Zhang, Methane recovery from natural gas hydrate in porous sediment using pressurized liquid CO2, Energy Convers. Manag. 67(2013) 257-264. [93] X.T. Zhou, S.S. Fan, D.Q. Liang, J.W. Du, Replacement of methane from quartz sandbearing hydrate with carbon dioxide-in-water emulsion, Energy Fuel 22(2008) 1759-1764. [94] W. Rice, Hydrogen production from methane hydrate with sequestering of carbon dioxide, Int. J. Hydrog. Energy 31(2006) 1955-1963. [95] M. Ota, Y. Abe, M. Watanabe, R.L. Smith, H. Inomata, Methane recovery from methane hydrate using pressurized CO2, Fluid Phase Equilib. 228(2005) 553-559. [96] M. Ota, K. Morohashi, Y. Abe, M. Watanabe, R.L. Smith, H. Inomata, Replacement of CH4 in the hydrate by use of liquid CO2, Energy Convers. Manag. 46(2005) 1680-1691. [97] C.G. Xu, J. Cai, F.H. Lin, Z.Y. Chen, X.S. Li, Raman analysis on methane produciton from natural gas hydrate by carbon dioxide-methane replacement, Energy 79(2015) 111-116. [98] Q. Yuan, C.Y. Sun, X. Yang, P.C. Ma, Z.W. Ma, B. Liu, Q.L. Ma, L.Y. Yang, G.J. Chen, Recovery of methane from hydrate reservoir with gaseous carbon dioxide using a three-dimensional middle-size reactor, Energy 40(2012) 47-58. [99] Y. Park, D.Y. Kim, J.W. Lee, D.G. Huh, K.P. Park, J. Lee, H. Lee, Sequestering carbon dioxide into complex structures of naturally occurring gas hydrates, Proc. Natl. Acad. Sci. 103(2006) 12690-12694. [100] B. Liu, H. Pan, X.H. Wang, F.G. Li, C.Y. Sun, G.J. Chen, Evaluation of different CH4-CO2 replacement processes in hydrate-bearing sediments by measuring P-wave velocity, Energies 6(2013) 6242-6254. [101] B.P. McGrail, H.T. Schaef, M.D. White, T. Zhu, A.S. Kulkami, R.B. Hunter, A.T. Owen, P.F. Martin, Using carbon dioxide to enhance recovery of methane from gas hydrate reservoirs, Final Summary Report, Rep. PNNL, 2007. [102] Y. Zhang, X.S. Li, Z.Y. Chen, G. Li, Y. Wang, Experimental investigation into gas hydrate formation in sediments with cooling method in three-dimensional simulator, Ind. Eng. Chem. Res. 53(2014) 14208-14216. [103] O. Ors, C. Sinayuc, An experimental study on the CO2-CH4 swap process between gasous CO2 and CH4 hydrate in porous media, J. Pet. Sci. Eng. 119(2014) 156-162. [104] B.J. Anderson, M. Kurihara, M.D. White, G.J. Moridis, S.J. Wilson, M. Pooladi-Darvish, M. Gaddipati, Y. Masuda, T.S. Collett, R.B. Hunter, H. Narita, K. Rose, R. Boswell, Regional long-term production modeling form a single well test, Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope, Mar. Pet. Geol. 28(2011) 493-501. [105] R.B. Hunter, T.S. Collett, R. Boswell, B.J. Anderson, S.A. Digert, G. Pospisil, R. Baker, M. Weeks, Mount Elbert gas hydrate stratigraphic test well, Alaska north slope:overview of scientific and technical program, Mar. Pet. Geol. 28(2011) 295-310. [106] K. Yamamoto, K. Suzuki, Y. Nagano, Y. Nakatsuka, Approach to study mechanical stability of wellbore and formation for the offeshare production test from meethane hydrate deposits, Proc. Int'l Conf. on Gas Hdyrates, Beijing, 2014. [107] R. Matsumoto, Special issue on "Gas hydrate in Nankai Trough, Japan", Resour. Geol. 54(2004) 1-2. [108] L.P. Hauge, K.A. Birkedal, G. Ersland, A. Graue, Methane production from natual gas hydrates by CO2 replacement-Review of lab experimental and field trial, The SPE Bergen One Day Seminar, Grieghallen, Bergen, Norway, 2014. [109] D. Schoderbek, H. Farrell, K. Hester, J. Howard, S. Silpngarmlert, ConocoPhillips Gas Hydrate Production Test, Final Technical Report, Department of Energy, 2013. https://doi.org/10.2172/1123878. [110] K. Suzuki, P. Schultheiss, Y. Nakatsuka, T. Ito, K. Egawa, M. Holland, K. Yamamoto, Physical properties and sedimentological features of hydrate-bearing samples recovered from the first gas hydrate production test site on Daini-Atsumi Knoll around eastern Nankai Trough, Mar. Pet. Geol. 66(2015) 346-357. [111] S.R. Dallimore, C. T. S., Scientific results from the Mallik 2002 gas hydrate production research well program, Mackenzie Delta, Northwest Territories, Canada, Geol. Surv. Can. 585(2005) 1-8. [112] N.Y. Wu, L. Huang, G.W. Hu, Y.L. Li, Q. Chen, C.L. Liu, Geological controlling factors and scientific challenges for offshore gas hydrate exploitation, Mar. Geol. Quat. Geol. 37(5) (2017) 1-11. [113] C.L. Liu, Y.L. Li, J.Y. Sun, N.Y. Wu, Gas hydrate field production test:from experimental simulations to field prodcution practice, Mar. Geol. Quat. Geol. 37(5) (2017) 12-26. [114] B. Kvamme, Feasibility of simultaneous CO2 storage and CH4 production from natural gas hydrate using mixtures of CO2 and N2, Can. J. Chem. 93(8) (2015) 21-30. [115] K. Shin, Y. Park, M. Cha, K.P. Park, D.G. Huh, J. Lee, S.J. Kim, H. Lee, Swapping phenomena occurring in deep-sea gas hydrates, Energy Fuel 22(5) (2008) 3160-3163. [116] D.Y. Koh, Y.H. Ahn, H. Kang, S. Park, J.Y. Lee, S.J. Kim, J. Lee, H. Lee, One-dimensional productivity assessment for on-field methane hydrate production using CO2/N2 mixture gas, AIChE J. 61(3) (2015) 1004-1014. [117] X.H.Wang,Y.F.Sun,Y.F.Wang,N.Li,C.Y.Sun,G.J.Chen,B.Liu,L.Y.Yang,Gasproduction from hydrates by CH4-CO2/H2 replacement, Appl. Energy 188(2017) 305-314. [118] H.X. Wang, Hydraulic Fracturing Principle, Petroleum Industry Press, Beijing, 1987(in Chinese). [119] D.Z. Liu, Oil Well Stimulation Technology, Petroleum Industry Press, Beijing, 2005(in Chinese). [120] A.A. Gawad, J. Long, T. EI-Khalek, R. Bashandy, T. Mabrouk, A. Shaaban, A. Mathur, M. Yosry, C.C. Kraemer, J.M. Bernechea, Novel combination of channel fracturing with rod-shaped proppant increases production in the Egyptian Western Desert, The SPE European Formation Damage conference and Exhibition, 2013, 165179, (Noordwijk, The Natherlands). [121] T.H. Kim, S.J. Lee, K.S. Lee, Development and application of type curves for pressure transsient analysis of multiple fractured horizontal wells in shale gas reservoirs, Offshore Technology Conference Asia, Kuala Lumpur, Malaysia, OTC-24881-MS, 2014. [122] R. Rickman, M. Mullen, E. Petre, B. Grieser, D. Kundert, A practical use of shale petrophysics for stimulation design optimization:All shale plays are not clones of the Barnett Shale, The 2008 SPE Annual Technical Conference and Exhibition, 2008, 115258, (Denver, Colorado, USA). [123] B. Wang, Z. Fan, P.F. Wang, Y. Liu, J.F. Zhao, Y.C. Song, Analysis of depressurization mode on gas recovery from methane hydrate deposits and the concomitant ice generation, Appl. Energy 227(2017) 624-633. [124] V.P. Voronov, E.E. Gorodetskii, S.S. Safonov, Thermodynamic properties of methane hydrate in quartz powder, J. Phys. Chem. B 111(39) (2007) 11486-11496. [125] W. Shimada, S. Takeya, Y. Kamata, T. Uchida, J. Nagao, T. Ebinuma, H. Narita, Texture change of ice on anomalously preserved methane clathrate hydrate, J. Phys. Chem. B 109(12) (2005) 5802-5807. [126] H. Fan, L. Dai, C.Q. Ma, W.T. Hu, Study on exploiting technology of natural gas hydrate, Inner Mongolia Petrochem. 14(2011) 95-97. [127] K.S. Basniyev, V.V. Kulchitsky, A.V. Shchebetov, A.V. Nifantov, Gas hydrate development methods, Gas Industry of Russia, Digest (3) (2006) 10-11. [128] B. Dou, M.J. Qin, G.S. Jiang, W.S. Li, B.B. Fan, A discussion on technology for gas hydrates production in the South China Sea using geothermal as an energy source, Mar. Geol. Front. 27(10) (2011) 49-58. [129] S.C. Yang, S.B. Hu, D.S. Cai, X.J. Feng, L.L. Chen, L. Gao, Present-day heat flow, thermal history and tectonic subsidence of the East China Sea Basin, Mar. Pet. Geol. 21(9) (2004) 1095-1105. [130] Z.R. Chong, Z.Y. Yin, J.Z. Zhao, P. Linga, Recovering natural gas from gas hydrates using horizontal wellbore, Energy Procedia 143(2017) 780-785. [131] G. Li, X.S. Li, B. Yang, L.P. Duan, N.S. Huang, Y. Zhang, L.G. Tang, The use of dual horizontal wells in gas production from hydrate accumulations, Appl. Energy 112(2013) 1303-1310. [132] Z.X. Sun, Y. Xin, Q. Sun, R.L. Ma, J.G. Zhang, S.H. Lv, M.Y. Cai, H.X. Wang, Numerical simulation of the depressurization process of a natural gas hydrate reservoir:An attempt at optimization of field operational factors with multiple wells in a real 3D geological model, Energies 9(9) (2016) 714. [133] M.D. Max, A.H. Johnson, W.P. Dillon, Economic Geology of Natural Gas Hydrate, Springer, Dordrecht, 2006146-341. [134] Y. Wang, X.S. Li, G. Li, Y. Zhang, B. Li, Z.Y. Chen, Experimental investigation into methane hydrate production during three-dimensional thermal stimulation with five-spot well system, Appl. Energy 110(2013) 90-97. [135] J.N. Yan, Drilling Fluid Technology, China University of Pertoleum Press, Dongying, Shandong, 2006(in Chinese). [136] C.J. Liu, B.Z. Huang, T.T. Xu, X.L. Liu, Theory and Application of Cement Injection in Oil and Gas Wells, Petroleum Industry Press, Beijing, 2001(in Chinese). [137] S.Q. Gao, Hydrate risk mangement at high watercuts with anti-agglomerant hydrate inhibitors, Energy Fuel 23(2009) 2118-2121. [138] W.C. Wang, S.S. Fan, D.Q. Liang, Y.X. Li, A model for estimating flow assurance of hdyrate slurry in pipelines, J. Nat. Gas Chem. 19(2010) 380-384. |
[1] | Jinlong Liu, Chenye Wang, Xingrui Wang, Chen Zhao, Huiquan Li, Ganyu Zhu, Jianbo Zhang. Reconstruction and recovery of anatase TiO2 from spent selective catalytic reduction catalyst by NaOH hydrothermal method [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 53-60. |
[2] | Xinxin Li, Hongwei Shao, Shichao Zhang, Yong Li, Jingjing Gu, Qiang Huang, Jin Ran. Two dimensional MoS2 finding its way towards constructing high-performance alkaline recovery membranes [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 155-164. |
[3] | Hui Jiang, Zijian Zhao, Ning Yu, Yi Qin, Zhengwei Luo, Wenhua Geng, Jianliang Zhu. Synthesis, characterization, and performance comparison of boron using adsorbents based on N-methyl-D-glucosamine [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 16-31. |
[4] | Yong Xu, Qingbai Chen, Yang Gao, Jianyou Wang, Huiqing Fan, Fei Zhao. Performance comparison of lithium fractionation from magnesium via continuous selective nanofiltration/electrodialysis [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 42-50. |
[5] | Xiaoli Li, Minghua Liu, Kang Wang, Zhiqiang Liu, Guihai Li. Data cleaning method for the process of acid production with flue gas based on improved random forest [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 72-84. |
[6] | Runze Chen, Yuran Chen, Xuemin Liang, Yapeng Kong, Yangyang Fan, Quan Liu, Zhenyu Yang, Feiying Tang, Johnny Muya Chabu, Maru Dessie Walle, Liqiang Wang. Oxidative exfoliation of spent cathode carbon: A two-in-one strategy for its decontamination and high-valued application [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 262-269. |
[7] | Chaobo Zhang, Xiaoyong Yang, Jian Dai, Wenxia Liu, Hang Yang, Zhishan Bai. Efficient extraction of phenol from wastewater by ionic micro-emulsion method: Anionic and cationic [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 137-145. |
[8] | Yujia Cui, Zhiqiang Tan, Yanan Wang, Shuxian Shi, Xiaonong Chen. One-step crosslinking preparation of tannic acid particles for the adsorption and separation of cationic dyes [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 309-318. |
[9] | Tatyana P. Adamova, Sergey S. Skiba, Andrey Yu. Manakov, Sergey Y. Misyura. Growth rate of CO2 hydrate film on water–oil and water–gaseous CO2 interface [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 266-272. |
[10] | Yingjun Lin. Whole-process optimization for industrial production of glucosamine sulfate sodium chloride based on QbD concept [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 153-161. |
[11] | Bo Pan, Biao Liu, Shaona Wang, Yeqing Lv, Hao Du, Yi Zhang. Understanding the hydroxyl adsorption behavior at Pt electrode surface in high-temperature alkaline solutions [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 173-179. |
[12] | Aiqin Gao, Xiang Luo, Huanghuang Chen, Aiqin Hou, Hongjuan Zhang, Kongliang Xie. Design of the reactive dyes containing large planar multi-conjugated systems and their application in non-aqueous dyeing [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 264-271. |
[13] | Yong Niu, Xiaowu Peng, Jinfeng Li, Yuze Zhang, Fugen Song, Dong Shi, Lijuan Li. Recovery of Li2CO3 and FePO4 from spent LiFePO4 by coupling technics of isomorphic substitution leaching and solvent extraction [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 306-315. |
[14] | Xinhai Zhou, Dawei Zhou, Xinhui Bao, Yang Zhang, Jie Zhou, Fengxue Xin, Wenming Zhang, Xiujuan Qian, Weiliang Dong, Min Jiang, Katrin Ochsenreither. Production of palmitoleic acid by oleaginous yeast Scheffersomyces segobiensis DSM 27193 using systematic dissolved oxygen regulation strategy [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 324-331. |
[15] | Chun Deng, Xuantong Lu, Qixin Zhang, Jian Liu, Jui-Yuan Lee, Xiao Feng. Fuzzy optimization design of multicomponent refinery hydrogen network [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 125-139. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||